Chapter 6

Finite Elements for Plane Solids

6.1 INTRODUCTION

All real-life striscturcs are three-dimensional. It i éngineers who make the approximation
a% a one-dimensional (g, beam) or 8 two-dimensional (2.g., plae or plane solid) suue-
ture. In Chapeer | we explained in detail the conditions under which such approximation
could be made. When the stresses on 2 plane normal 1o one of the axes are approximately
zemo, then we say that the solid is in the state of plane stress. Similarly, when the corre-
sponding strains are zero, the solid is in the state of plane strain. A two-dimensional solid
is also called & plane sofid, Some examples of plane solids arz {1) a thin plate subjected to
in-plane forces and (2) a very thick salid with constant cross-section in the thickness di-
reetion. In this chapier, we will discoss when an enginesring problem can be assumed to
be tao-dimensional and Bow Lo solve such o problem using two-dimensional finite ele-
ments, We will introduce three different tvpes of plane elements. Every element has its
own characteristics. In order to use the finite element appropriately, thorough undarstand-
ing= of capabilities and limitaticns of each element are reguired.

In peneral, two-dimensional elastizity problems can he expressed by o system of
coupled second-order pertial differcntial equations, Based on the constraints imposed in the
thickness direction, & rwo-dimensional problam cin be considered as cither a plane stress or
plane strain problem. Although the taro problems are different, the equations developed [or
plane siress problems can be used for planc strain case by medifying the elastic constants.

Inthe plane solid problem, the main variables are (he displucements in the coordinate
directions, After selving for the dizplacements, stresses and strains can be calculated from
Lhe derivatives of displocements. The displacements are ealculated using the fact that the

structure is in equilibrivm when the twizl potential energy has is minimum value. This
will yield a matrix equation similar o the beam problem in Chapter 4.

6.2 TYPES OF TWO-DIMENSIONAL PROBLEMS
.21 Governing Differential Equations

In twao-dimensional problems, the siresses and sirains are independent of the coordinate in
the thickness direction {usually the z-axish. By setting all the derivatives with respect o
z-oordinaie in Eq. (1.68) to zero, we obtain the governing differential equations for plane
problems as
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Let w and © be the displacement in the x- and y-direetions, respectively. From Eqgs.
{1.3%9) through (1.45), the strain components in a plane s0lid are defined as

clu an fu  du
By = ey — T =l == 6.
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Tn addition, the srresses and sirzins are related by the following conslilutive relation:
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Substituting the stress-strain relations in Eq. (6.3} and strain-displacement relations
in Eg. (6.2) in the equilibrium equations in Eq. (6.1), we obtain a pair of second-order
partial differential equations in two variables, (x.y] and v(x,v). The explicit form of the
equations is available in tzxtbooks on elasticity, e.g., Timoshenka and Goodier.'

The differential equation must be accompanied by boundary conditions. Twa types
of boundary conditions can be defined. The first one is the boundary in which the values
of displacements are prescribed (essential boundary condition). The other is the boundary
in which the maciions are prescribed (nateral boundary coadition). The boundary condi-
tions can be formally stated as

L= on.8,

aon=T, onSr e

where 5, and Sy, respectively, are the boundaries where the displacement and traction
boundary conditions are prescribed. The objective is to determine the displacement field
i) and oxy) that satisfies the differential equation (6.1) and the boundary conditions
in Eq. (6.4). Now we will discuss the stress-strain relations in Eq. 16.3) for the two differ-
cnt plane problems.

Plane Stress Problems

Plane stress conditions exist when the thickness dimension (usually the z-direction) is
much smaller than the length and width dimensions of a solid. Since stress al the two
surfaces normal to the 7-axis afe zero, it is assumed thar stresses in the normal dircetion
are zero throughout the body; ig.. 6. = Ty = Tyz = (1 In such a case, the structure can be
modeled in two dimensions. An example of the plane stress problem is a thin plate or disk
with applicd in-plane forces (see Figure 6.1]. If an out-of-plane force (e.g.. transverse
pressure in the z-direction) is applied, then the problem can be assu med plane siress only
when the applied pressure load is much smaller than the in-plane siresses such as o,

— Mon-zero Sress coOmMponents: T, P, Ty
= Mon-zefo sUain components: &uwy, Sy, P Vo

For linear isotropic materials, the sress-sirain relation can be written as (see Section 1.3)
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g P Timeshenko aml LN Goodier. Theory of Elasticity, Motiaw Hdl, NY, 1984,
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Figure f.1 Thin plaie with in-plane applied forees

where [C,] 18 the stress-strain matrix or elusticity matrix for the plane stress problem. Ti
should be noted that the normael strain 6. i the thickness direction is not zero; it can be
caleulated fram the following relation:

by = ;: :d"'.r | ‘:"1_1-} {6.6)

6.2.3 Plane Strain Problems

A state of plane strain will exist in 2 solid when the thickness dimension 15 much larser
than other two dimensions. When the deformation in the thickness direction is constrain-
e, the solid is assumed to be in 2 state of plone strain even if the thickness dimension is
small. A proper assumption is that that simains with = subscript are zero i.e.,
Ee = ¥ = ¥ = [ In such & case, it is sufficient to model a slice of the sofid with unit
trickness. Some examples of plane strain problems are the retaining wall of a dam and
long eylinder such as a gun barrel (see Figure 6.2).

— Non-zero Sess Componants: @, @, T, T
~ Non-zero smain componants: £y, Bp, Ve
For linear isotropic materals, the stress-strain relations under plane sirain conditions
can be wrillen as (see Section 1.3)
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where [C,] is the stress-strain matrix for plane strain problem. It should be noted that the
transverse stress o, s not equal to zero in plane slrain cuse, and it can be caloculated from
the fallowing relaticn:

(6.7)
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Figure 6.2 Dam structure with plane strain sssumption
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Table 6.1 Muterial Properly Conversion Between Plane Steain and Flane Stress Problems

Frown — To & B
o 11
' i - 1]
Plane strain — [ane stress E[1-| _.-\I.
=T 1w
2 - E _ v
Plane stress — Flanc sirain e :
1= \| 1
1 -1

624 Eguivalence between Plane Stress and Plane Strain Problems

Although plane stress and plane strain problems are different by dehinition, they are quite
similar from the computational viewpeint. Thus, i 15 possible [0 use the plane strain for-
mulation and solve the plane stress prablern. Tnsuch case. twe material propertics, & und
v, need o be mrodified, Similarly, it is also possible 1o convert the plune stress Tormulaticn

into the plane strain formulation. Table 6.1 summarizes the conversion relations.

63 PRINCIPLE OF MINIMUM POTENTIAL ENERGY

Similar to the beam-bending problem in Chapter 4, the principle of minimum potential
enerey can be used to derive the finite element equations for the two-dimensional plane
solid problems.

6.3.1 Strain Energy in a Plane Solid

Consider a plane elastic solid &5 ilustraled m Figure 6.3, The strain energy is a form
of energy that ig stored m the solid due to the alastic deformation. Formally. it can be
defined a:

I= El m e} (o hdV
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Fipure &3 A plane solid under the
distribates! boad {7, '.F',.']- on the traction
boundary 57
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where /& is the thickness of the plane solid (h = | for plane swain) and €] = [C.| for
plane stress and [C] = [C,] for plane strain. Since stress and strain are constant throughout
the thickness, the valume integral is changed to area integral hy multiplying by the thick-
niess in the secand line in By, (6.9). The linear elastic relation in Eq. (6.2 has been used in
the last line of Eq. (6.9,

6.3.2 Potential Energy of Applied Loads

When a force aeting on a body moves through & small distance, it [oses its potential to do
additional work, and hence its potential energy is given hy the negative of product of the
foree end comesponding displacement. For example, when caneentrated forces are ap-
plied to the salid. the polential energy hecomes

]
Ve -ZF,-;.-.- (610
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where F; is the i-th force, iy is the displacement in the direction of the farce, and ND is the
total number of concentraled forces acting on the body. The negative sign indicates that
the potential encrgy decreases as the force has cxpended some energy performing the
wark given by the produet of force and correspending displacement.

When disuibuted forees, such as a pressure foad, act on the cdge of a body [see
Figure 6.3), the summation sign in the ahove expressien is replaced by integration over
the edge of the body as shown below;

V =—h ] [Tyt + Ty ir)edS
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where T, and 1, are the components of applied surface Torces in the v- and y-direction,
respectively

If body forees (forces distributed over the volume) are present, work done by these
forces can be compuied in a similar manner. The gravitational force is an example of
body force. In this case, integration should be performed over the valume, We will dis-
cuss Lhis further, when we derive the finile lement e tions,

6.3.3 Total Potential Energy

As with the beam problem, the potentiol energy is defined as the sum of the slrdin energy
and the potential energy of applicd loads:

II=U+V (6.12)

where U is the strain anergy and V' is (he potential energy of applied loads, The principle
of minimum tal potential energy states that of afl possible displacement configurations
of a selid'struciure, the equilibrium configuration corresponds o the minimum total po-
tential encray. That is, at equilibriom, we have
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where w220, ay are the displacements that define the defarimed confipuration of the
body. In finitz element anulysis, the deformation of the body is defined in terms of the
displagements af the nodes. Tn the fellowing sections, we will wse the principal of mini-
mum lotal potential encrgy o derive finite element equations for different types of
clements.

6.4 CONSTANT STRAIN TRIANGULAR (CST) ELEMENT

In finit: elernent anulysis, a plane solid can be divided inta a number of comiguous ele-
mients. A simplest way of dividing 2 Plane solid is to use mizngular elements, Figure 6.4
shows a plane solid that is divided by trangular clements, Euch element shares its edge
and Lwo comer nades with gn adjieent element, sxcept for those o the boundary, The
three venices of a triangle are the nodes of that element as shown in Fieure 6.4, The first
mrde of an element can arbitearily be chosen. However, the sequence of the nodes 1, 2,
and 3 should be in the counter-clockwise diraction, Eich node hes two displacements,
wind v, respectively, in the t- and ydirections.

The displacements within the element are interpolited in terms of the nodal displace-
ments using shape finctions, Tn the polynemial approximation, the displacement has to he
a lineir function in x and ¥ Becaise dizplacement mformation is avuilable cnly at three
points {modes), and a lipear Polynomial has three unknown coelfficionts, Since displace-
tent is @ linear function, strain and stress are comstant within an clement, and thar is whiy
a trinngular element is called a consiom sirain triangle elemens.

641 Displacement and Strain Interpolation

The first step in deriving the Imite element iy equation is to inerpolale the displace-
et Function in terms of the nodal displacements. Let the r- and y-dirsctinnal displace-
menrs B wlr,yh and wixy), reipectively. Since the two-coordinates gre perpendicular to
cach other forthogonal). the st y) and wix,v) are independent uf each nther, Henee, wex,y)
meals 1o be interpolated in terms of Wy, sz, 2nd vy, and o) in lerms of ), s, and vy, Tt
i% ohvicus thar the interpolution function must be three-term polysomial in + anad .
Since we must have rigid bedy displacements (constant displacements} and constant
strain terms in the inlerpelation function, the displacement interpaladon must be of the
following form:

(6.14)

ulx ¥) =oy — agx + wy
Vn = A4 St B

whers ¢/sand #'s are constants, In finite element amalysis, we would like to replace the
canstants by the nodal displacements. Lel us eonsider r-dirzctional displacements, which

Figure 6.4 Constant sirann riangular {CS 17 slemen
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are &y, and s, AL Node 1, for example, x and ¥ wke the values of 1y and vy, respes-
lively, and the nodal displacement is u, If we repeat this for the other two nodes, we
obtain the following three simulianenns equations;

ulsey, ¥ = =0y — oty — 43
ule. yal=u3 =y + aars + gam (6.15)

WLES, Vi =3 =& | waxy + o

In matsix notation. the ahave equations can be written as

iy L w9 &)
wep=[1l B w 24 (G 16)
i 1 Xz Ky

If the three points (g, vpl, (82, w2y and (xs, Ty @ne noCon a siraight line, then the inverse
of the above coefficient matrix exists. Thus, we can caleulste the unknown coefficients a5

o) N ) | 2 A m

a2 = |1 xm m My p= : b B it (6,17
24
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where A is the aren of the triangle and
hi=%xph—my, Bi=p-¥ a=n-n

h=xyi=—xm, bi=w v, a=x-o (65.18)
f=miye—dar, Bi=n+v, a=nm-xn

The area A of he iriangle can be calenlated from

| I N
A= ;UL‘I | X oW (6.1%)
N e

Mote that the determinant in Eg. (6.19) is vera when three nodes are collinear, In such a
case, the arca of the tiangular element is zero and we cannat uniguely determine the three
coefficients.
A similar procedure ean be applicd for v-directional displacement #ix, ¥), and the
unknown coefficients &, [i = I, 2, 3] are determined using the tollowing equation:
fin T fJ--| *-'l
Bo=—Ib b bl|{n (6.20)
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Adter caleuluting o; and 8;, the displacement interpolation can be written as

i) W
wlr, ¥) =[N Na Milq ez ) oand ofx, =[N M N 0213
i i

where the shape lunctivns are defined by
ki
Ny, v = A+ bix 4oy
oy o A
Malx, ¥l = A fo o+ bax 4 o) (6.22)
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Nyfx, v) = ZAI' bt hr ey
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Mate that Ny, Ny, and Ns are linear functions of x- and v-coordinates. Thus, interpolated
displacement varies linearly in cach coordinate direction.

To make the derivations simple, we would rewrite the interpolation relation in Eq,
(6.21) in matrix form. Let {u} = {u. v} be the displacement vector at any point (x, y).
The interpolation can be written in the matrix notation by

Y

i )

L]

M MO MO MO I
{u} = - § 3
] 0 N 0 N 0 N i

or

{uix. 3} = [N(x, y)l {q} (6.23)

Equation (6.23) is the critical relation in finite element approximation. When a point {x, ¥)
within a triangular element is given; the shape function [N] is calculated at this point.
Then the displacement at this point can be calculated by multiplying this shape function
matrix with the nodal displacement vector {q}. Thus. if we solve for the nodal displace-
ments, we can calculate the displacement everywhere in the element. Note that the nodal
displacements will be evalvated vsing the principle of minimum lotal potential energy in
the following section.

Adter caleulating displacement within an element, it is possible to calculate the strain
by differentiating the displacement with respect to x and y. From the expression in Eq.
{6.23), it can be noted that the nodal displacements are constant, but the shape functions
are functions of x and y. Thus, the strain can be calculated by differentiating the shape
function with respect to the coordinates. For example, &, can be written as

T L 2, B
. e (;Nr—[x, y]u;) = 2 Eu,- = 2 EHH,: i5.24)

Mote that &y, w2, and #s are nodal displacements and they are independent of coordinate x.
Thus, only the shape function is differentiated with respect to x. Similar calculation can
be carried out for &, and .. Using the matrix notation, we have

u H
AREEIEE

{5} = 5 = ﬂ B e BT e e !; = ln]{q} (6.23)
%_L@ oy by ooy by ooy ba &
Oy Ok U3

It may be noted that the [B| matrix is constant and depends only on the coordinates of the
three nodes of the triangular element. Thus, one can anticipate that if this element 15 used, thea
the strains will be constant over a given element and will deperd only on nodal displacements.
Henee, this element i called the Constant Strain Trisngular Element or CST element.
The interpolation of displacement in Eq. (6.23) and the inlerpolation of strain in Eq.
(6.25) are used for approximating the strain energy and paotential energy of applied loads.
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F 3 Figure 6.5 Two adjacent constant strain triangular (CST)
clemants

6.4.2 Properties of the CST Element

Before we derive the sirain energy, it mav be useful to study some inleresting aspects of
the C5T element. Since the displacement field is assumed to be a linear function in x and
%, one can show that the triangular element deforms into anather tHangle when forces are

applied, Furthermore, an imaginary steaight line drawn within an element before deforma-
tion becomes another straight line after deformation.,

Let us comsider the displacements of points along one of the edges of the triangle. Con-
sicler the points along the edpe 1-2 of Element 1 in Figure 6.5, These points can be conve-
niently represented by a coordinate £ The coordinate £ — DatNode 1 and & — o at Node 2.
Adong this edge, xand v ane related o £ By subsbluting this relation in the displacement
functions, ane can express the displacements of points on the edge 1-2 as a function of £, Tt
can be gasily shown that the displacement functions, for Both w and @, must be linear in £, 1.€..

{ﬁ[ji':l =¥ — ¥af

W€l = 3 — yaf

where ' are constanis o be determined. Since the variation of displacement is linear, it
mught be argued that the displacements shonld depend only oo o) and 0o, and not on s
Then, the displacement ficld along the edpe 1-2 takes the following form:

R E 3 i
uig) = III l =5 by —Eug = H(Elin + Hai&wa
; (6.26)

i

[ &\ .
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where H) and H; are shape functicn: defined along the edge 1-2 and « is the length of
edee 1-2. One can alse note it o condition called inrer-element displacement compaii-
Eility is satisfied by triangular elements. This condition can ba described as follows. After
the [oads are applicd and the solid is deformecd, the displacements at any point in an cle-
menl cun be computed frem the nodal displocements of that purticular element and the
intzrpolation functians in Bq. {6.23]. Consider a point on 2 cammon edge of twa adjacent
elemants, Thiz point can be considered as belonging to cither of the elements. Then the
nodes of either tnangle can be vsed in mterpolating the displacements of this point. Fow-
ever, ane must obtain & unique setof displacements independent of the choice of the ele-
mens. This can be truc only if the displacements of the peints depend only on the nodes
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common Lo bolh elaments. In fact, this will be satisfied because of Eq. (6.26). Thus, the
CST element satisfies the inter-element displacement compalibility.

EXAMPLE 6.1 Inierpolution in a Trinngular Element

Consider vwo tianpular elements shown o Fipure 5.6, The podal displacements are given as
[w, Wy, va, 16, vy, e, e} = =00, 0, &0 -0, 1,11, 0} Caleulare displacements and
sirains in both elements,

BOLLTHRY  Elament 1 has nodes 1-2-4, Then, vsing the redal coordinaies, we can derive the shape Fone-
s s shiown belaa:

=0 =1 =10
¥ =0 m=0 ;=1
=1 =0 fi=0
=-1 k=1 b&=0
ag=—-1 @=0 @g=1

[ alélitien, the ares of the element is @5, Thus. from Bq, (6.22) the shape functions can be derived as

Mg vl=1l=-x=y
Wz, v} =x
Malx, ) =¥

Then. the displucements in Element | can be intzrpelated as

3
LTS ¥} ZM[:, ¥y =0.1{2e — 1}
i=|
3
x5 =Y Nl vl =00
L)
Straing can be calculated from Eg. 16,251, o dirccily differenduing the ubove expressions for dis-
Plmcemenis, as

hll.
gt = =—=02
(g il
By = =10
r aullfu 5"“]
=St =00
&y
Tu;lln (1.1
(@ &
e
I
{:U (—E:I—..A Figure &.6 Interpolation of displucernemis in irangolar
AL} (L eleprents
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Element 2 conmects Modes 2-3-4, Thus, using the nodal coordinates, we can boild the shape fune-

Tions, as
| = =1 =10
¥ =0 =1 Y=
h=1 =1 =1
o =0 b =1 =1
e =—1 rr =1 cx=10

In addition, the area of the element is 0.5, Thus, from Bg. (0.22), the shape Tunctions can be oblined as
Wiz yl=1-y
Nalz, ¥l =x4%—1
Wil ¥l =1—y

Then, the displavemsnts of Elemen 2 can be inverpolated as

1
a ey = N "Nilx v =01(3- 20— 2y)

i=l
¥

e 9} =3 Witz yhir=0.0
da |

Strains can he ealenlated from Eg. (6.25), or directly differentiafing the above expressions for dis-
placements, o5

v ﬁﬂ‘(z'l
e e
P I:-‘;vl;h
b =——=T10
i it
y  fu Bed
:I-"J.'l.'J _—— -1]2
iy i

Note that the displacernents are linear and the sirains are constant in each element.
From the given nodal displacements, it is clear that the top edge has strain &, — —0.2,
while the bottom cdge has £, = 0.2, The strain varies linearly along the y-coordinate.
However, the triangular element cannat represent this chasige and provides constam val-
ues of &, = (L2 for Element 1 and &, = —0.2 for Element 2. In general, if a plane solid is
under the constant strain states, the CST ¢lement will provide accurate solutions. Howev-
er, if the strain varies in the solid, then the CST element cannot represent it accurately, In
such acase, muny elements should be used (o approximate it as a series of step funetions.
Mote that the strains along the interface between two elements are discontinuous,

6.4.3 Sirain Enerpy
Let us caleulate the smain enerey in a rypical triangular clement, say Element & In Ex.
6,97, the strain energy of the plane solid was derived in terms of strains and the elasticity
meatrix [C]. Substituting for steains fom Bq. (5.25), we olitain
TR frcn
e =EH{;.~}?_C; {e}da™
4

o

=2 {a) [ ic Bl g ©20

G 3IRu6
A

L. e Tl
=5{q""V " {q}
= Ehi
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where [k''] is the efemem siffness mateic of the tiangular element. The column vector
q"! is the displacement of the three nodes that belong to the clement. The dimension of
[K"']is 6 6. In the case of the rangular element, all entries in madees [B] and [C] are
constant and can be integrated casily. After integration, the element siffness matrix takes
the form

(k) = ra|B]"[C)IB (6.28)

where A 15 the area of the plane element. Using the exprassion for [B] in Byq. (6.25) and
siress-strain relation in Eq. (6.5), the element stiffness maulrixz cun be caleolated.

One may note that in the case of truss and frame elements, we used a transtormation
muatrix [T] in deriving the element stiffness matrix. However, in the present case, we have
used the global courdinale system in the derivation of [k*'], and thet is the reason For not
using a transformation matrix. In some cases, however, it is required to define the element
in a local coordinate systern. For example, if the material 15 not isetropic, it will have a
specific directional property. In such a case, k'] is first derived in a local coordinate
system and transformed Lo the globel coordinates by multiplying by appropriate transfor-

mation matrices. 1
The strain energy of the entire salid is simply the sum of the clement strain energies.
That is,”
P L
= l{ulr] _i}-{{qu-l} |'|l_-:"|]{qlrl-} (6.20)
pom =

where NE 15 the number of elements in the modsl. The superscript (¢) in ' implies that
it is the vector of displacements or degrees-of-freadom (DOFs) of Element ¢, The sumima-
tion in the above equation leads 1o the assembling of the elemeant stiffness matrices into
the structural slffness matrx.

U= 1Q, ) [K]{Q:} (6.30)

pi] —

where [(),} is the column vecror of all displacements in the model and [K.] is the struc-
tural stiffness matrix obtained by assembling the elemen siffness matrices,

6.44 Potential Energy of Concentrated Forces at Nodes

The next step is to calculate the potential energy of extemal forces. We will consider three
diffierent types of applied forces. The first type is concentrated forces at nodes. It may be
noted thar the element expects two forces, ong in the g-direction and the other in the y-
dirzction, at each node. In general, the potentinl energy of concentrated nodal forces can
be written as

o, .

V== [Fuu+Fyrr) = —{Q.} {Fu} (6.31)

=1
where {Fy} = [Fiy Fry o+ Fune F,.-n_\.]r is the vector of applied nodal Torces and
NI is the number of nodes in the solid. The contribution of a particular node to the poten-
tial energy will be zero if ne force is applied at the node, or the displacement of the node
becomes zero. The above potential energy ol concentrated forces does not include sup-
porting reaction because the displacement at those nodes will be zem.
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6.4.5 Potential Energy of Distributed Forces along Element Edges

The seeond type of applied force is the distributed force {iraction) on the side surfave of
the pline solid. In the plane solid, the traction is assumed to be a constant through the
thickness, Let the suiface traction force {T} = {T.. T,}" is applied an the element edge
I-2 as shown in Figure 6,7, The unit of the surface traclion is Pa (N/m”) or psi. Since the
fovree 35 distributod along the edge. the potential enzrgy of the surface traction force must
defined in the form of integral ns

Ve = <k [{u(s)}T T (s} s = —{d])"h J|H.;_mT|'T;mm (6.32)
S Sy

where {u}' = [ufs] wiv} is the vector of displacements along the Fdge 1-2, (T} —
[Tils) Tuls)] is the vector of applied tractions aleng the Edge 1-2, |.¢J'}"r =
lwy v wy | is the vector of displacements of Nodes | and 2, and |H] =
H 0 H 0
0 H 0 H
tign ean be performed in a closad form if the specified surface tractions (T, and Ty)are a

simple function of 5. We will modify Bq. (6.32) to include all the six THIFs of the element
aivd rewrite o5

] 18 the matrix of shape functicns defined in Eg. (6.26). The integra-

Vi~ —{g Y JFH':JJJ’ {Wis) s = —{q" {1y} (6.33)
&
W have used the complete shape function matrix in Bq, (6.33)
" S g 000
N =] ¢ " : (6.34)
0 f{“ 0300

If the last expression in Eq. (6.33) is cxamined carefully, it is possible to note that the
foree vector {15) is a nodal foree vector that is equivalent i the distributed force applied
on the edge of the clement, This is also called (he work-equivalent nodal foree vector. Far
& constant surface traction T, and T, we can ealoulate the equivalent nodal force, as

E I:-.Il = .'-'jlll':f. 0 Tj;
i (f— gl T,
i r - ¥ .
P : T ol 0 T, o ;
0 =a [N 0 {MaBl%0 @
] [i] 0
i 0 0

£
A
b 'l'|=l 1T

Figure 6.7 Applied surface traction along edge 1-2
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For the unifonm surfoce adtion force, the equivalent nodal forces are obtained by simply
dividing the tntal force equatly between the two nodes on the edge.

The potential energy of dismbuted forces of all elements whose edge bhelongs to the
traction boundusy S st be assembled to build the glabal force vector of distributed
fowees:

NE
V==Y (g ) = Q)" (Fr) (6.36)
e=]

where N5 is the number of elements whose edpe belongs 10 ;.

64 Potential Energy of Body Forces

The body forces are distributed over the entire slement (2.g., centrifugal forces, gravita-
tipnal forees, inertiv forces, magaetic forces). Fpa'r simplification of the derivation, let us
assume that @ constant body force b= {k,, &, }" is applied o the whole element. The

potential energy of body force becomes .

L [I[u zl]{ i“ }dA =-{a"'}'s ‘”["]T # { iﬁ }

(6.37)
= = {a" Y
whare
10 b,
i b,
kL 0f[B) Ak
=21 {'F’r}_T : (6.38)
10 By
0 1] b

)

Thes resultant of body forces is Adb, in the x-direction and fAb, in the y-direction. Equa-
tion (6.38) equally diswibuies these forees (o the three nodes. Simular to the distributed
force, |y) is the equivalent nodal fvrve (hat corresponds to the constant body force.

The pitential energy of body forces af all elements must be assembled to build the

global force vector of body forces:
E !
v= -3 (a1 {0} = ~{Q.} {F) (6.30)

a=]

where NE is the number of elements.

6.4.7 Global Finite Element Equations

Since the swain energy and potential energy of applied forces ars nowr available, let us zo
hack e the patential encrgy of the triangular element, The disceete version of the potential
energy batomes

=0+ V =5 {QI K]{Q} - {Q. 1 (Ew + Fr+ Fa} (6.40)
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The principle of minimum potential energy in Chapter 3 states that the structure is in
equilibrium when the potential energy is minimum. Since the potential enerey in Eg.
(6,400 55 2 quadratic form the displace ment vector (€], we can differentiate IT o chiain

4ll
HQ.}
The stationary cundition of the potential energy yields the global finite elament matrix
eqquations.

The assembled structural stiffoess matrix |[K,] is singular due to the presence of tigid
body motion. Afler eonstructing the global mutrix equation, the houndary conditions are
applied by removing those DOFs that are fixed or prescribed. Afier imposing the hounda-
ry condition, the global stiffness matrix becomes non-singular and can be inverted 1o
solve for the nodal displacements.

= 0= [KJ{Q.} = {Fy + Fy + F5} (6.41)

6.4.8 Calculation of Strains and Stresses

Omce the nodal displacements are calculated, strains and stresses in individual clements
can be calculaied. First, the nodel displacement vecter {g™'! for the element of interest
needs to be extracied from the global displacement vector, Then, the strains and stresses
in the element can be obtained from

{z} = [Bl{q"] (6.42)
anwd
fe} = [Cliz} = [C)[B]{a*} (65.43)

where [C] = [C;] for the plane stress problems snd [C] = [C,] for the plane strain
problems.

Ax discussed before, stiress and strain are constanl within an element because the
matrixes [B] and [C] are constant. This property can cause difficulties in imterpreting the
results of the finite element analysis, When twe adjacent elements have different stress
values, it is difficult to determine the stress value at the imerface. Such discontinuity is
not caused by the physics of the problem, but by the inability of the triangular element in
deseribing the continuous change of stresses across element boundary, Tn fact, most finite
elements cannot maintain continuity of stresses across the element boundary. Most pro=
grams average the stress at the element boundaries in order (o make the sress look contin-
uous. However, as we reline the model using smaller size elements, this discontinuity can
be reduced. The following example illustmates discontinuity of stress and strain between
two adjacent CST clements.

EXAMPLE 6.2 Cantilevered Plate

Consider a cantileversd plate as shown in Figure 6.8 The plare has the tollowing properties: & =
0.1 in, £ = 30 = 10° psi, and v = (3. Model the plate using two CST elements 1o determine the
displacements end stressos

SOLUTION  This problem can be modeled a5 plone stress hecatse the thickness of the plate is small com-
pared 1o the ather dimensions.
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S0.000 Tha

(1) Element 1; Kodexs 1-2-3

Figure 6.8 Cantilcvercd Plate

Using meded coondinates, we can caleulate the constants defined m (6.18) as

.T|=[}-_‘F|'—'U B=10,y=23 .I‘L-=|0~_‘FJ'—'|5
bi=p-n=-10 B=pu-n=15 b=p-p=-3
co=x;—x=0 c=xn-—n=—I0 pg=x-—-n=10

In addition. from the geometry of the glament, the area of the wiangle 4

The watrix [1] it Eq. iﬂ.ﬁl} and :_l-‘,u-! can be wrilten as

0.5 = 10 = 10 =30,

([0 0 B 0 & 0
M]_ﬁlﬂ g 0 oo 0 o
Tley B oe ooy B
S W LG B =B n]
=—|a o 0 =10 0 1
100
J[ﬂ -0 -1 15 10 -5
and
1w 0o i; i3 u‘|
Cd=—=|v 1 0 |=3297x107\3 1 0|
=%lo 0 - 6 0 .35

Using the above two matrices, the element siiffness matrix can be obtained as

K] = 4 B] G B

A, B =75 A5

A75 075 263

1.3 — 448

= 3297 = 106 594
Symmetric

{2y Elemen: 2: Nodes 1-3:4

By following similar procedures a8 for Element |, the constanis in Eq.

he wrirlen as

S35 0 =13
J75  JOEE
-55 313
338 —.631
a =3
S

(6.18) for Element 2 can

=03 =0 ko=10 v =19 =10 ym="20
b=ya—y3==8 W=yp-p=W B=p-n=-IF
cr=xi—kp=—10 mmxi-n=0 m=x-—Xx=10
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The area of Elément Z ix twice hat of Element 1: As =05 » 20 x 10 = 100, The srain-
displacement matrix [ ] can be abtained ax

B

300 O =1 o b0 16

I R R e
M —% i 200 10 =15

By tollowing e sue procedure, the stiffess mais for Element 2 ean be computed as

J30 081 =y — 178 i | A1
272 05 —R3 0e9. 184

o = | IEL 0. =735 15
Lo e L 35 195 26
G5 — 4

[ Symmetric A47

(3 Global finite element matsix equations :

The two element stiffness matrices are sssembled o farm the global stiffness malriz. Sines
there are four modes, the model has eight DOFs: cach node has two DOVs. Thus, the global matris
has a dimension of & x &. Afier assemnbly, the global matrix equation van be written as

a3 DEL —75 A5 n —325 A UL AR T
AT 178 ~263 335 0 060 — 1Bl
1.8 S4ER =55 EG 1
&% 5338 —6%) 1

3297 x 10

a
]
15
— 253 || g
-.244
247 |

Symmerne

where Ry, By, R, and B s soknown reacton forees ot nodes 1 and 4.
(4) Applving boundany conditdons

The displacement houndary conditions are: o) = 1 — 1y = =1 Thus, we remove first, see-
ond, seventh, and eighth, rovwes and columns, After removing those mws and ealumns we obtain the
[ellowing reduced matrix equaticn:

1.3 —4B4d —55 M3 [ 0
894 338 681 () w | ] —s00m
Eymmatrnic L3 —18d || my S 000
L ]
Nate tat the global stiffness matrix of the above equation is non-singular and, therefore, the unique
solution can be obgained.

(51 Solution
Ihe above matrix equation Gin be solved for unknown nodel displacements:

3.297 = 10F

= — 7147w W
i = — 4453 = 1070
w0y — 1881 = 1072

= — 2727 w 1077

(f] Straim and stress in Eleroent |

Adver culouluting the nodal displacements, strain and stress can be celoulated at the elemient
leval. First, the displacements foe those nodes that belong to the clement need to be extracted from
the global nodal displacement vector. Since nodes 1, 2, and 3 belong 10 Element 1, the nodal
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displacerivents. will be fqb — [y w, st e} = [0 0, 2047 30077, —4.455 x 1077,
1897 s 117F, —2727 = 107} . Then, strain In Eq. (625 can be caloulatec usimy {c} = [B]{a}

]
- 0
o 1 ~da B 15 K =% @8 S
ay p=gs| ¥ 00 —i .n i | e
Y i W -ig i W= L g
—ETATw 12
—1.268 % 1077 l
=+ L7 =107
—3.312 = 1077
The strzszes in the clement are obitaaned oom Bg. (6.5}
O e —1.368 = 107 —24. 709
oy =320 0073 1 0 |4 17k p=4 44,406 Hpsi
] 0 0 35]L=s2axi0™? 37,063

(7) Strains and stresses in Ebernent 2

Eiement 2 has Modes 1, 3, and 4. Thus, the nedal displacements will be {q]} = {eq, 1.
s, g y‘]" = {u‘ 0. 1891 % 107%, <2727 = 1072, 0, :}I}r. Using the clement displocements,
the strains and skresses in the elenent can be obtained as

4]
By I = 0 om n -5 0 lE!;'l':eliJ'z
fiy =ﬁ o = 0 0 ] lLII_ .
Yoy —10 5 b 2 W0 =I5 a
1]
[.891 w1077
= 0
BT w1077
and
. [ <& O 180" 62, 354
oy h=307x1013 1 D 0 =4 18,706 >psi
5 10 0 3s) 27107 ) | -31,460

I ile stresses in the bwo elements are cxamined, one ean node thar the stress value changes
suenly acioss the element boundary, For example. & in Element 1 is 24, 709 psi, whereas in
Element 71 4 62,354 i Such a drastic harge in stresses Is an indieator that the finite element
anakysis reant ts fromm (fe current model ane not accurate and more elements are reguired.

From Example 6.2, we G conclude the following:

— Siresses ae constant over the individual element.

— The solution is not sccurate becuuse thare are larpe discomtinuities in siresses
acruss element boundaries.

— With only tao clements, the mesh is very coarse and we obviously cannot expect
very good resalts.
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6.5 FOUR-NODE RECTANGULAR ELEMENT
6.5.1 Lagrange Interpolation for Rectangular Element

A rectangular element is composed of four nodes and eight DOFs (see Figure 6.9). Itis a
part of a plane solid that is composed of many rectangular elements. Each element shares
its edge and two corner nodes with an adjacent element, except lor those on the boundary.
The four vertices of a rectangle are the nodes of that element, as shown in Figure 6.9. The
first node of an element can arbitrarily be chosen. However, the sequence of Nodes 1, 2, 3,
and 4 should be in the counter-clockwise direction. Each node has two displacements, u
and v, respectively, in the x- and y-directions.

Since all edges are parallel to the coordinate directions, this element is not practical but
useful as it is the basis for the quadrilateral element discussed in the following section. In
addition, the behavior of the rectangular element is similar to that of the quadrilateral ele-
ment. Shape functions can be calculated using procedures similar to that of CST element,
but it is more instructive to use the Lagrange interpolation functions in x- and y-directions.

Consider the rectangular element in Figure 6.9. From the geometry, it is clear that
X3 = X2, ¥4 = ¥3, ¥4 = X1, and y2 = ;. We will use a polynomial in x and y as the inter-
polation function. Since there are four nodes, we can apply four conditions and hence the
polynomial should have four terms. as follows:

B =y + tax + oy + oyxy
v = B+ fax+ Bay + Baxy

Let us calculate unknown coefficients e; using the x-directional displacement u;

(6.44)

) = ¢ + Xy + oy 4+ egxg
U3 = oy + aax; + o3y: + ez
M3 = oy + 23 + sy 4 axa)s
ty = 0t + 2xy + or3yg + ogxgyy

It is obvious that we need to invert the 4 % 4 matrix in order to calculate the interpolation
coefficients.

Instead of matrix inversion method, we use the Lagrange interpolation method to
interpolate  and v. The goal is to obtain the following expression:

i
wx, ¥) =[Ny N2 Ns Ay] ;f (6.45)
)
Iy
where Ny, ... Ny are the interpolation functions. To do that, let us first consider dis-

placement along edge 1-2 in Figure 6.9. Along edge 1-2, y = y; (constant): therefore
shape functions must be functions of x only as shown below:

(e, y1) = [mx)  malx) ]{ X } (6.46)

oL

©,

Figure 6.9 Four-node rectangular element
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Using one-dimensional Lagrange interpolation formula the shape functions can be

obtained as
X =— X2 =k
mx) = —— m(x) = : (6.47)
x—x2 X1 — ¥

This is the same procedure that was used in Chapter 3. Next, since ¥y = ¥3 = ¥4 along edge
4.3 in Figure 6.9, the displacement can be interpolated as

wplx, ya) = [nalx)  malx) 1{ :: } (6.48)
Again from one-dimensional Lagrange interpolation formula, we have
X—X3 ey X — X4
mlx) = malx) = ;
E s =0 (6.49)

Equations (6.46) and (6.48) represent interpolation of displacements at the top and bot-
tom of the element, respectively. So far, we have interpolated displacements in the x-
direction only. Now, we can extend the interpolation in the y-direction between
wp(x, vy Jand sy (2, y3) using the same Lagrange interpolation method. By considering uy
(x, v ) and uylx, ya) as nodal displacements, we have the following interpolation formula:

ulx, v) = [my)  naly) ]{i:}; ‘:'3]} (6.50)
where .
e i 651)
y1— X Ya—MN

are Lagrange interpolation in the y-direction. By substituting Egs. (6.46) and (6.48) into
Eq. (6.50), we have the following formula:
I
[m(x) malx)]
L2

alx, y) = [m(y)  na(y)] (6.52)
U
[malx) u;[_x]]{ 4}
Lz 0
Thus, =
iy
ulx, v) = [m(mly)  n2lx)my) na()maly)  na(x)na(y) 14 1:; (6.53)
a

LY

Comparing the above expression with Eq. (6,45), we can define shape funclions.
Ny, ...y Na- Inthe rectangular element, it is enough to use the coordinates of two nodes,
because ¥, = i, ¥1 = ¥o. etc. We will use the coordinates of Nodes 1 and 3. Using the
property that the area of the clement is A = (x3 — x;){y3 — y1), We obtain

[ M= m () = 368 =903 =)
My =l ) = — 5 = x)05 =)

I {6.54)
N3 =nslxing(y) = E{xi —x}(y1 =¥

X Ny =na(x)ns(y) = _:!_('I} —x){n —yl
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Nole that the shape functions for rectangular elements are the product of Lagrange
interpolations in the two coordinate directions. Let us discuss the properties of the shape
functions. It can be easily verified that N 1(x, ¥} is:

= 1 at Node 1 and 0 at other nodes

— linear function of x along edge 1-2 and linear function of ¥ along edge 1-4
(bilinear interpolation)

- zero along edges 2-3 and 3-4

Other shape functions have similar behavior. Because of these characteristics, the i-th
shape function is considered associated with Node i of the element.

To make the derivations simple, we rewrite the interpolation relation in Eq. (6.45) in
matrix form. Let {u} = {u, »}” be the displacement vector at any point (x, v). The inter-
polation can be written using the matrix notation by

o)

Nl iNe 00 1 N Boials b0 | ax
0 .M O M0 M0 N

L T4 J
or,
{u} = [Nl.s{q}s., (6.55)

Note that the dimension of the shape function matrix is 2 x 8.

EXAMPLE 6.3 Shape Functions of a Rectangular Element

A reclangular element is shown in Figure 6.10, By substituting the numerical values of nodal coor-
dinates into the ahave shape function formulas, the expressions for shape functions for this rectan-
fular element can be obtained as

v <B=02-y a2y

¥

T@[G.E} (D3.2)

X

il B
L0 @i Figure 6.10 Four-node reclangular element
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(a) M, {b) Ma

Figure 6.11 Three-dimensional surface plots of shape functions for a rectangular element

Three-dimensional plots of N; and N; are shown in Figure 6.11(a) and Figure 6.1 1{b).

Since the shape functions are given as function of x- and y-coordinates, we can use an
approach similar to that of CST element to obtain the strain-displacement relations. Thus,
the strain can be calculated by differentiating the shape function with respect to the coor-
dinates. For example, &, can be written as

ﬂﬂ 5 1 4 BN;
P S — = Nilosohe | = ) —=—u 56
B S oo =5 ; (. y)ui 2 h (6.56)
Note that t;. t2, s, and us are nodal displacements and are independent of coordinate x.
Thus. only the shape function is differentiated with respect to x. Similar calculation can
be carried out for &, and . Then, we have

- .

U

y—13 { ¥ia—¥ [} == { ) Kt E"

] 4
fel==| O X —x3 0 X —x 0 I—Xx { X —x |3 b
A s
X—2a =8 Xp—X P (Ee==dy e sl sy
"

tg

3

=[BJ{a}
(6.57)

Note that the matrix [B] is a linear function of x and y. Thus, the strain will change linear-
ly within the element. For example, &,, will vary linearly in y while constant with respect
to x. Thus, the element will have an approximation error, if the actual strains vary in the x-
direction.
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6.5.2 Element Stiffness Matrix

The element stiffness matrix can be calculated from the strain encrgy of the element. By
substituting for strains from Eq. (6.57) into the expression for strain energy in Eq. (6.9), we
have

0 =3 [[erCieranc

A

h : !
= 50 ([ I8l BTy (g (6.58)
A

| E :
= E{qm}r[kmiuxa{ﬂ“"]}

where [k'“!] is the element stiffness matrix. Calculation of the element stiffness matrix
requires two-dimensional integration. We will discuss numerical integration in the next
section. When the element is square and the problem is plane stress, analytical integration
of the strain energy yields the following form of element stiffness matrix:

| F—u [ 4 34w =LA sty L Ay v [_—E
f g 12 8 12 & O B
I 4+ 3= 1 —3w ] l+v -3+v =143 34w
8 6 g 6 TR iz 8 O
T A e 11 3=y L+ v -1 +3 =34+ 1w
T § 6 = 6 8 I 4
=1 =+ 3p u I+u 5—p e I+w 1+w -3+
lk"’]=£ TR f T 6 8 S R 1%
1 —? 34 1+ @ i | =3 =y 4w 2 SET [ T
12 AR 6 R AR, 8 TR
14+p —=3+4+v —1+3u J+v 14w I-w [ = 3p v
8 T T 8 6 8 3
¥ —1+3r =34 I+ I+v  1—3» F—v I +w
6 8 12 8 T 8 6 ' &8
1 — 3w J+0 I 4w =34+r =143 I I+v 3—w
=R = 3 12 8 6 Jiiiage | 6
(6.59)

It is interesting to note that the element stiffness matrix does not depend on the actual
element dimensions but it is a function of material properties (E and v) and thickness k

for a square element.
The strain energy of the entire solid can be obtained using Eg. (6.29), which involves

the assembly process.

6.5.3 Potential Energy of Applied Loads

In the CST element, we discussed three different types of applied loads: concentrated
forces at nodes, distributed forces along element edges, and body force. The first two
types are independent of element used. Thus, the same forms in Eqgs. (6.31) and (6.36)
can be used for the potential energies of concentrated force and distributed force,

respectively.
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In the case of the body force, the element shape functions are used to calculate equiv-

alent nodal forces. When a constant body force b = {be, b_ﬁ}r acts on a rectangular ele-
ment, the potential energy of body force becomes

S H[ # '“]{E}M =4 HMT‘#‘{ 2} (6.60)

A A
= {q}"{1}")
where
107 ( b, )
0 1 by
1 0 by
{fi”}=% ? :} {E}-—$ﬁ i}ﬂ (6.61)
0 1 b,
1 0 by
5 =1 .

Equation (6.61) equally divides the total magnitude of the body force to the four nodes.
if,} is the equivalent nodal force that corresponds to the constant body force. The poten-
tial energy of body forces of all elements must be assembled to build the global force
vector of body forces as in Eq. (6.39).

Using the principle of minimum total potential energy in Eq. (6.41), a similar global
matrix equation for the rectangular elements can be obtained. Applying boundary condi-
tions and solving the matrix equations are identical to the CST element. After solving for
nodal displacements, strains and stresses in each element can be calculated using Eqs.
(6.42) and (6.43), respectively.

EXAMPLE 6.4 Simple Shear Deformation of a Square Element

A square element shown in Figure 6.1 2 js under a simple shear deformation. Material properties are
given as E = 10GPa, v=10.15, and thickness is k= 0.1m. When distributed force f=
100N /m? is applied horizontally at the top edge, calculate stress and strain COMPONENLS. Compare
the results with the exact solution.

x  Figure 6.12 A square ¢lement under a simple shear
condition
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Deformed shape
Undeformed shape

Figure 6.13 Simple shear
deformation of a square element

SOLUTHON Since the problem consists of one element, we do not need assembly process. The element
has eight DOFs: {Q,} = {en, w1, tiz, 12, 23, O3, Us, u:}". From the boundary condition given in
Figure 6.12, only two DOFs are non-zero: s and ws. Thus, from the ¢lement stiffness matrix given
in Eq. (6.59), all fixed DOFs are deleted 10 obtain

3-u It+w
g | T e m*[ 4.88 —2.53} U

iK] = 1 — 'r'] 34w di—rn Uy —2.88 4,88 Ly

12 6

The total distributed load of 10,000 N at the top edge will be equally divided into two nodes: 4 and
3, Thus, the global matrix equation becomes

. 488 —-288]Jwx] _ J 3,000
_288 488 |Lus [~ 135,000
The above equation can he solved for unknown nodal displacements, as u3 = 4 = 0.025 mm. Then,
from (6.57), the strain components can be obtained, as

y—1 1] I —7 ] ¥y 0 =y ]
{6} = 0 x-=1 0 -x 0 =x 1} l1—= 1

¥=1 F—1 =x 1—35y X 3 1—=-x =¥

i)
2.5 % 1072

Note that the shear strain is the only non-zero strain. Thus, the rectangular element can aceurately
represent the simple shear condition, Figure 6.13 shows the deformed shape of the solid. Note that
the deformation is magnified for the illustration purpose.

Using the stress-strain relation in Eq. (6.3} for plane stress, the stress components can be

obtained, as
O 101 }- s 0 0
Oy P =T oosd 025 | 0 0 =& 0 yPa
oy X o 0 0375)|25x%107 0

Since distributed force f = 10kN/m? is applied at the top edge, the above shear stress is exact.

EXAMPLE 6.5 Pure Bending Deformation of a Square Element

A pure bending condition can be achieved by applying a couples in the case of a beam (see Chapter
43, For the plane solid, the effect of a couple can be achieved by applying equal forces in opposite
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S Figure 6.14 A square element under pure hending
condition

directions. A square element shown in Figure 6.14 is under a purc bending condition, Material prop-
erlies are given as E = 10GPa, v = 0.25. and thickness is h = 0.1 m. When an equal and opposite
force f = 100KkN is applied at Nodes 2 and 3, calculate stress and strain components. Compare the
results with the exact solutions from the beam theory.

SOLUTION

(a) Analytical solution: If we consider the sbove plane solid as a cantilevered beam, the moment of
inertia | — 8333 » 10~ m* and the applied couple M = 100KN - m. Thus, the maximum stress will
occur at the bottom edge with the magnitude of

n(-3) |
—;'_ = ﬁ-'}Mpﬂ

where L is the length of the element.The minimum stress will occur at the top edge with the same
magnitude, but in compression. Since the stress varies linearly along the y-coordinate, we have

G = 6.0(1 — 2y) MPa

(T bmay = —

All other stress COMPONENtS are LeTo,

{h) Finite element solution: Since we use only one element, we do not need assembly process. The
element has eight DOFs: {Q,} = {uy. vy, 4z, v, 43, ¥3, g, u5}". From the boundary condition
given in Figure 6.14, only four DOFs are non-zero: iy, 3, U3, and 3. Thus, from the stiffness
matrix of a square element given in Eq. (6.59), all fixed DOFs are deleted to obtain

|'3—u _1+1: v —1 4+ 317
& 19 6 &
l+v 3F—v 1—3 F4+w
__Eh 8 6 8 =13
[E:]_1—u'I U 1—3p 3=w%v 140
i ] f b
143 34+u 14w T—p
L 8 12 i 6
480 —1.67 044 =033
—108|= 167 4.39 033 -2.89|m
e (.44 033 480 1687 |wm
—033 =28 167 4389 |
Using the applied nodal forces, the global matrix equation becomes
489 =167 044 033 ua 100, 000
10 —1467 480 033 =289 L gl || i
044 033 489 167 ws [ ] — 100,000

-0:33 —-28 167 489 5 0
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The above equation ean be solved for unknown nodal displacements as

iy =0409T mm, 1 =0409 mm
iy = —0 401 mm, » =0409] mm

Then, from Eq. (6.57), the strain components can be obtained as

(4091

y=1 B =% 0 0 -5 4 0.4091
{fe} =1 0 x=1 0 & 0 x 0 1-x|4 b 1073
xr=1 y—1 = 1l-y x y 1-x —» —0.4091

04091

0.4091 x 10771 = 2y)
- )
0.4091 = 1071 — 2x) :
Using the stress-strain refation in Eq. (6.5) for plane stress, the stress components can be obtained as

Ty 100 1 025 0 04091 x 107 (1 —2y)
o o ] 0 0375 | 04091 x 10731 = 2x)
4.364(1 - 2y)
=+ L0911 = 2y) }MPa
1.636(1 — 2x)

The deformed shape of the element is shown in the figure below.

i Undeformed
shape

Deformed

------- Figure 6.15 Pure bending deformation of a square element

In a plane solid, the applied couple produces a curvature, but the rectangular element is unable
1o produce deformation corresponding to the curvature beeause the displacement can only change
linearly within the element. The rectangular shape deforms to the trapezoidal shape, and as a result,
non-zero shear stregs is produced. Note that the maximum stress (021 )nax 1% Only T3% (4.364/6.0) of
the exact solution. In addition, o, and 7, have non-zero values. The applied couple is supported by
other stress components, oy and 7, and as a result the element shows smaller (e ) - I @ sENSE,
the element shows a siff behavior.

6.6 FOUR-NODE ISO-PARAMETRIC
QUADRILATERAL ELEMENT

As discussed in Section 6.5, the rectangular element is limited in practical applications
due to its inability to represent irregular geometries. The four-node quadrilateral ¢lement,
shown in Figure 6.16, can overcome such limitations. The four-node iso-parametric finite
element is one of the most commonly used elements in en gineering applications.
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Ya A
4(=1L1) L
e ]
I (=1=1}) =1
Figure .16 Four-node
quadrilateral element for
{a) Physical element (b} Reference element plane solids

The element consists of four nodes and two DOFs at each node. Since the geometry
of the element is irregular, it is convenient to introduce a reference element and use a
mapping relation between the physical element and the reference element. The term iso-
parameiric comes from the fact that the same interpolation scheme is used for interpolat-
ing both displacement and geometry.

6.6.1 Iso-parametric Mapping

The physical element in Figure £.16 is a general quadrilateral shape. However, all interior
angles should be less than 180 degrees. The order of node numbers is the same as that of
the rectangular element: starting from one comer and moving in the counter-clockwise
direction, Each node has two DOFs: u and ©. Thus, the element has a total of eight DOFs.

Since different elements have different shapes, it would not be a trivial task if the inter-
polation functions need to be developed for individual elements. The interpolation functions
must satisfy the inter-element displacement compatibility condition discussed earlier in the
context of triangular elements. Instead, the concept of mapping to the reference element will
be used. The physical element in Figure 6.16{a) will be mapped into the reference element
shown in Figure 6.16(h). The physical element is defined in x-¥ coordinates, while the refer-
ence element is defined in s-f coordinates. The reference element is a square element and has
the center at the origin, Although the physical element can have the first node at any corner,
the reference element always has the first node at the lower-left comer (—1, —1).

The interpolation functions are defined in the reference element so that different ele-
ments have the same mterpolation function. The only difference 15 the mapping relation
between the two elements. Since the reference element is of square shape, the Lagrange
interpolation for rectangular elements can be used. Using (6.34), the interpolation or
shape functions can be written in s-f coordinates as

rM[.l.',f]:%(l—s][l—:}
|
Ng., ].|=—|+..'F I —
Mt d =50 4n0-0 e
Ma(s, 1) =7(1 +3)(1 +1)
| M. 1) :%(I —s)(1 +1)

Since the above shape functions are Lagrange interpolation functions, they satisfy the
same properties as those of the rectangular element. Thus, N, is equal to unity at Node 1
and zero at other nodes, etc.
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Note that in the CST and rectangular elements, the shape functions are used to inter-
polate displacements within the element. In the quadrilateral element, the shape functions
are also used for mapping between the physical element and the reference element. The
quadrilateral element is defined by the coordinates of four corner nodes. These four corner
nodes are mapped into the four corner nodes of the reference element. In addition, every
point in the physical element is also mapped into a point in the reference element. The
mapping relation is one-to-one such that every point in the reference element also has a
mapped point in the physical element. Thus a physical point (x, v} is a function of refer-
ence point (s, 7). A relation between (x. ¥y and (s, ) can be derived using the same shape
functions as

Xy
2

X3
.|

X(s, 0} =[Ni(s, ) Nafs. 1) MNa(s, t) Nils, 8]
{6.63)

¥s, 1) =[N (s, 1) Na(s, 1) Nais, 1} Ny(s, AR :

[t can be easily checked that at Node 1. for example, (s, )= (—1, —1) and
Ni =1, ¥ =N; =N, =0. Thus, we have x(+1, —1) = x; and Yi—l, =1) =y, ie.,
Node 1 in the physical element is mapped into Node | in the reference element. The
above mapping relation is called iso-paramerric mapping because the same shape func-
tions are used for interpolating geometry as well as displacements.

The above mapping relation is explicit in terms of x and v, which means that when s
and ¢ are given, x and y can be calculated explicitly. The reverse relation is not steai ghtfor-
ward. However, the following example explains how s and ¢ can be calculated for a given
x and v,

EXAMPLE 6.6  Iso-Parametric Mapping

Consider a quadrilateral element of the trapezoidal shape shown in Figure 6.17. Using the iso-
parametric mapping method caleulate: (a) the physical coordinates of point A (0.5, 0.5), and (b) the
reference coordinate of point B (1, 2),

SOLUTION
(a} AtpeintA, (s, r} = (0.5, 0.5). The values of the shape functions at A are
\ I 3 ; 9 \ 3
Nl = Nl =—  N{AALN="1, 1Ly = —
F(I-_J [t‘l, 1{2-;] 16 3{; 2] 16! Y4 1-“.} 16
g At )
©ET @) @k-1.1) 3N1L1)
T e {edls.s)
;  ircam! : — gl
@in.m - W x Di-1-1) EXI-1] Figure 6.17 Mapping of a

quadrilateral element
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Thus, the physical coordinate becormnes

3 9 3

E Tt e il T

} Nf[zsz 'l'lﬁ "1+ 2+|6 0 2.25
l =] o 3

L i) = EM D R R G e e

Thus, the reference point {5, £} = (0.5, (0.5) is mapped into the physical point (x, v} = (2.25, 3.0).
(h) Atpoint B, (x, v) = (1,

2}, From the iso-parametric mapping relation, we have

4
x=1 =E|"'r'.«[.'r,r]x; =H1—s)1—0)- 6+ {1 +5)(1—1) -4
i=

+ 314+ 8)(141) 24 Hl =5} {1410

=st—2143
4
y =2 :Z {5ty = %[l—s}{l—:] 0 1{ +s){l —r}-4
=1
+ 41481+ -d+ H1=s5)(1+41) -0
=2+

From the above two relations, we obtain (s, 1) = (0, 1). Note that the above results will not be the
same, if the sequence of node numbers in the ]:Ihyu{.al element is changed.

6.6.2 Jacobian of Mapping

The idea of using the reference element is convenient because it is unnecessary to build
different shape functions for different elements. The same shape functions can be used for
all elements. However, it has its own drawbacks. The strain energy in the plane solid
element requires the derivative of displacement. i.e.. strains. As can be seen in Eq. (6.25),
the strains are defined as derivatives of displacements, In the case of CST and rectangular
elements, the shape functions could be differentiated directly because the nodal displace-
ments are explicit functions of x and y. For those elements, the derivatives of the shape
functions can be easily obtained because they are defined as a function of physical coor-
dinates (x, v). However, in the case of the quadrilateral element, the shape functions are
defined in the reference coordinates. Thus, differentiation with respect to the physical
coordinates is not straightforward. In this case, we use a Jacobian relation and the chain
rule of differentiation. From the fact that s = s{x, y} and # = f{x. ¥}, we can write the
derivatives of N; as follows:

aN; _ ON; ix {S‘N; iy
s ox ﬂs dy Ay Os
% 34'*{; :5'1 e E}N ! {}F

o dx o1 dy 0t

Using the matrix form, the above equation can be written as

BN, ax By ( ON, AN,
5% |-l s
Js = ds s .ﬁx ] I (6.64)
El'N; ﬂx a} I'_'-”'Ir; &N I

ar a ord Lay Ay
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where [J] is the Jacobian meatrix and its determinant is called the Jacobian, By inverting
the Jacobian matrix, the desired derivatives with respect to x and v can be obtained:

oN; on, o] (oM
ihx 1] o5 | B By s ;
% = L = — : H.65
chy o &t B i
where [J] is the Jacobian and is defined by
dx iy Ox dy
Wl = e o {6.66)

Since iso-parametric mapping is used, the above Jacobian can be obtained by differentiat-
ing the relation in Eq. (6.63) with respect to s and r. For example,

ﬂ,‘t’_ s ENJ’{'—I{ | i ]+.I'[ .
Os - - E-f . Al X2 T3 — Xy 1 X — X2+ —xy)
B Ny ]

- 2. EJ; = El:_x' —xz 33+ x4) +§{.x| —xz X3 —Xx4)
A similar expression can be obtained for dy/ds ind 8y/dr by replacing x; with v,. Note
that x/ds is the function of 7 only, while x/81 is the function of s only.

As seen from Eq. (6.65), the derivative of the shape function cannot be obtained if the
Jacobian is zero anywhere in the element. In fact, the mapping relation between (x, y) and
(5, 1) is not valid if the Jacobian is zero or negative anywhere in the element
(-1<st<1).

The Jacobian plays an important role in evaluating the validity of mapping as well as
the quality of the quadrilateral element. The fundamental requirement is that every point
in the reference element should be mapped into the interior of the physical element, and
vice versa. When an interior point in (s, #) coordinates is mapped into an exterior point in
the (x, y) coordinates, the Jacobian becomes negative. If multiple points in (s, 1) coordi-
nates are mapped into a single point in (¥, ¥) coordinates, the Jacobian becomes zero at
that point. Thus, it is important to maintain the element shape so that the Jacobian is posi-
tive everywhere in the element.

EXAMPLE 6.7 Jacobian of Mapping

Check the validity of iso-parametric mapping for the two elements shown in Figure 6.18.

¥
o
I @z 2 KD 5 (3K5,.5

(1, 4)

(1) [, 0) (0, () ~ . Figure 6.18 Four-node quadrilateral

i) i) elements
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SOLUTION
(a) MNodal coordinates:

— Iso-parametric mapping:
4
x=ZMx.« = N1 +2N3 =
Te=]

{335+ 1 +91)

L —-

fo | =

4
y——ZN;y =Ny + Ny ==(3+ 5+ 3t +si)
=

— Jacobian:
ax dy
7l 0 B 113+ 14t
T ox By 4|14s 34s
dar e
1 | P | if
|J|:H[{3+IJL3+.:}—[l+!]-[|+s]|= f=54=1

208 o
Thus, it is clear that |[J| >0 for —1<s<land -1<¢ <1 Figure 6.19 shows constant ¢ and
f lines, Since all lines are within the element boundary, the mapping is valid.

(b} Nodal coordinates:

X = U,_I‘: = 1._.1;-; = 51.1'4 =0
Nn=0yp=4y=5yu=35

— Iso-parametric mapping:
2 1
=% Npy==(1+3)3+ 2N
w= D Moty = {1 +4)(8 420

4
1
¥y= ’ZI:N,I}I.I = i(? 4+ Lo 3r— llu'fjl

— Jacobian:

|
= 5,[5 — 105 + 107}

Figure 6.19 Iso-parametric lincs of a quadrilateral element
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Figure 6.20 An example of invalid mapping

Note that [J| = 0at 5— 105 + 10t = 0; i.e,, s — t = 1/2. The mapping illustrated in Figure 6.20
clearly shows that the mapping 1s invalid. Some points in the reference element are mapped into
the outside of the physical element.

In the practical sense. maintaining positive Jacobian is not enough because of the
numerical nature. For example, when the Jacobian is small, i.e.. |J| < 1, calculation of
stress and strain is not accurate and the integration of the strain energy will losen its accu-
racy. The small value of the Jacobian occurs when the element shape is far from the rec-
tangular one. To avoid problems due to badly shaped elements, it is recommended that the
inside angles in quadrilateral clements be > 157 and < 165, as illustrated in Figure 6.21.

6.6.3 Interpolation of Displacements and Strains

As we explained in iso-parametric mapping above, the same shape functions are used for
interpolating displacements. Similar to the rectangular element the quadrilateral element
also has eight DOFs. Then the displacements within the element can be interpolated as

r R

H
1
In
H N| 0 Nz 0 ."'I'rj ] Na 0 b
{-u}=[{} MO N O N 0 N (= N R
L]
ity
U4

LS r

where the same shape functions in Eq. (6.62) are used for interpolation. The difference
between the previous two elements (CST and rectangular elements) and the quadrilateral
element is that the interpolation is done in the reference coordinates (s, 1). However, the
behavior of the element is similar to that of the rectangular element because both of them
are based on the bilinear Lagrange interpolation

)

= 163°

Figure 6.21 Recommended ranges of internal angles in a quadrilateral
=  glement
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./ Now we derive the strain-displacement relationship for the quadrilateral element. To

" make the following matrix operation convenient, we first reorder the strain components
T P o i et A

into thefderivatives of displacenients, as

%‘nfﬂx 1000 ?}HE;
ORI el R ai,»ax

Yy LBy + Duf O D E X AN
dujfdy

As we discussed above, the derivatives of displacements cannot be obtained directly.
Instead, we use the inverse Jacobian relation 50 that the denvatives of displacements are
written in terms of the reference coordinates. Thus., we have

i B i
el 1| As | ) ds
gu( = ox ox ||
dy |8 85 1\
Yy [ B[
ix =_1_ it ils i
S
ay "% i AN
Writing the two equations together, we have
Juf x dyfh  —dy/Os 4] 0 O/ Oy
dufdy | 1 | —ox/Ot i ds 0 0 Su Bt
outx| M| O 0 dyjor  —Oy/ds| | dv/ds
duf oy 0 0 —axfir  Ox/ds Suf i
The strains can now be expressed as
. dvjor  —Oy/Os 0 0 e fds
i i 0
Z _ 1 P g i —ox/Ot  Ox[Os 0 0 fu/
il 3o 0 0 dyjon  —d/os | | Ov/0s
™ - 0 o —axar oxos | L vfar
( ch s
A/ ot
=\A
A1 du/ s
| v/t

where [A] is & 3 % 4 matrix, The derivatives of the displacements with respect to 5 and ¢
can be obtained by differentiating uls.) and v(s,t) in Eq. (6.67), which involves the deriv-
atives of the shape functions:

o
ul]
fufds 1+ 1] L—t 0 +r 0 =l= ] 3
gufe | _1|=1+s O -1 -3 ] l1+s O 1—3 0 |
dufis [ 4 0 e 0 l—t g 41 0 —1=1])m
Bt 0 —l+F 0 —1-5 0 l4= 0 l—= s
Wy
iy

=(G]{q}
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where the dimension of matrix [G] is 4 % 8. The strain-displacement matrix [B] can now
be written as follows:

e/ s
b uf i B0 i
;ﬂ =819 o5 = [A][G}{q} = [B]{q} (6.68)
' dufdr

where [B] is a 3 x 8 matrix. The explicit expression of [B] is not readily available be-
cause the matrix [A] involves inverse of Jacobian matrix. However, for given reference
coordinate (s, 7). it can be calculated using Eq. (6.68). Note that the strain-displacement
matrix [B] is not constant as in CST elements. Thus, the strains and stresses within an
element vary as a function of s and ¢ coordinates.

EXAMPLE 6.8 [Interpolation using Quadrilateral Element

For a rectangular element shown in Figure 622, displacements at four nodes are given by
{eey, vy, wz, vz, U5, v, g, w} = 0.0, 00, L0, 0.0, 2.0, 1.0, 0.0, 2.0}. Calculate displacement
and strain at point (s, +) = (1/3, 0.

SOLUTION When the reference coordinate (s, 1) = (143, 0], the shape functions become
H| - 31 2 3 : .
Using Eq, (6.67), the displacements can be imterpolated, as

4
1 1 1 1 =
1F=ZNH-‘J=E-H¢ -ﬁ-i—i-1+ -Q:E

I=1

In order to calculate strains, we need the derivatives of the shape functions. First, we calculate the
derivatives with respect to the reference coordinates, as

I | 1 (N |
— — - = —— = =] = = ——
R il A e A e
oy 1, 1 e ]
‘Iﬁ-}_du_;}_df ﬁ i i
aNy 1 1 a1 o 1
S R T b
N, 1 1 N, 1 !
el — o Ln B e p— —— ] — ==
o i e G i
¥, A
33,2 4(-11) 31,1y
s
B Figure 6,22 Mapping of a
20L=1}  rectangular element
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In addition, the Jacobian matrix can be calculated using Eq. (G.63), as

'g_iz—%.ﬁg-ﬂi-s-&-n%
| z=—%~ﬂ+%-ﬂ+%-2—l-r-2=n
%:—%-Dr%-3+%-3+é-l}=ﬂ
k%’:=—%-ﬂ—%-ﬂ+%-2+lﬁ-2-—l
ax & 3 2
-\ B[ -2
dr ot

The Jacobian is positive, and the mapping is valid at this paint. In fact, the Jacobian matrix is con-
stant throughout the element. Note that the Jacobian matrix enly has diagonal components, which
means that the physical element is a rectangle. The horizontal dimension of the physical element it
1.5 times that of the reference elemenl. and the vertical dimension is the same.

Using the inverse Jacobian matrix and the derivatives of the shape functions, we can calculate
the following:

oM, _ 0N Ox N0y Y (M
Js  Ox O dv s s = -a
on_awoe oy 7 om (7|2
o x ot By o Lo iy
o A T € I 1
x| _ g T e e 3 Os
2 N (o 1) |2 s

iy ot o ot

Using the derivatives of the shape functions, the sirains €an be caleulated using Eq. (6.68), as

T = A S_faN; 20N
: Vﬂ=a+:i§(a—y“f+ﬁ“)=§(Tar“**'aﬁ:”)
1 1 1 1 1 1 1 1 1
——E'D—E‘l+§'2+E-G—E'H+E-G+E'1—3*2-.--{5

The reader can verify that the same results could have been obtained using the formulas in
Eq. (6.57) derived for rectangular elements.
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6.6.4 Finite Element Matrix Equation

Asn the case of the CST element, the element stiffness matrix can be calculated from the
strain energy of the element. By substituting for strains from Eq. (6.68) into the strain
energy in Eq. (6.9) we have

v =3 [[e e aa

=300 | [B)71C) ) aaa') (669

Bx3 3=33xB
A
1 i “F " i [
= 5{a“} k"l{q"}
Rxg

where [K'*'] is the element stiffness matrix. Calculation of the element stiffness matrix has
two challenges. First, the integration domain is a general quadrilateral shape, and, second,
the displacement-strain matrix [B] is written in (5, ©) coordinates. Thus, the integration in
Eq. (6.69) is not trivial. Using the idea of mapping the physical element into the reference
element. we can perform the integration in Eq. (6.69) in the reference element. Since the
reference element is a square and is defined in (s, ¢) coordinates, the above two challenges
can be resolved simultaneously. Again, the Jacobian plays an important role in transform-
ing the integral to the reference element. Let us consider an infinitesimal area dA of the
physical element is mapped into an infinitesimal rectangle ds-dr in the reference element,
Then, the relation between the two areas becomes

dA = |J|dsdt (6.70)

Thus. the element stiffness matrix in the reference element can be written as
45|

k) = i [| B C)m)ar = | [ 817 I3 s 67)

Although the integration has been transformed to the reference element, still the integration in
Eq. (6.71} is not trivial because the integrand cannot be written down as an explicit function of
s and £. Note that the matrix [B] includes the inverse of the Jacobian matrix. Thus, it is going to
be extremely difficult, if not impossible, to integrate Eq. (6.71) analytically. However, since the
integral domain is 4 square, numerical integration can be used to calculate the element stff-
ness matrix. Numerical integration methods using Gauss quadrature, which is the most popu-
lar method, will be discussed in the following section. Similar to the other elements, the strain
energy of entire solid can he obtained using Eq. (6.29), which involves the assembly process.

The potentials of applied loads can be obtained by following a similar procedure as
the CS8T and rectangular elements. The poiential energy of concentrated forces and dis-
tributed forces will be the same as that of the CST element. The potential energy of the
body force can be calculated using Eq. (6.60), except that the transformation in Eq. (6.70)
should be used so that the integration be performed in the reference element. For rectan-
gular element, the uniform body force yields the equally divided nodal forces. In the case
of the quadrilateral element, however, the work-equivalent nodal forces will not divide
the body force equally because the Jacobian is not constant within the element. The
numerical integration can be used for integrating Eq. (6.60).

Using the principle of minimum total potential energy in Eq. (6.41), a similar global
matrix equation for the guadrilateral elements can be obtained. Applying boundary condi-
tions and solving the matrix equations are identical to the CST element. After solving for
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Table 6.2 Gauss Quadrature Points and Weights

NG Integration points (5} Weights (w;) Exact polynomial degree
1 0.0 20
2 =+0.5773502692 1.0
3 +0.7745966692 0.5555535556
0.0 (.ERERARERES
4 +0.8611363116 0.3478546451
+0.3399810436 (.6521451549
5 +0.9061 795459 (.2360268851
105384693101 (L47B6286703
0.0 0.568288888G

nodal displacements, strain and stress in an element can be calculated using Egs. (6.68)
and (6.43), respectively.

6.7 NUMERICAL INTEGRATION

As discussed before, it is not trivial to analytically integrate the element stiffness matrix
and body force for the quadrilateral element. Although there are many numerical integra-
tion methods available, Gauss quadrature is the preferred method in the finite element
analysis because it requires fewer function evaluations compared 1o other methods, We
will explain the one-dimensional Gauss quadrature first.

In the Gauss quadrature, the integrand is evaluated at predefined points (called Gauss
points). The sum of these integrand values, multiplied by integration weights (called
Gauss weight), provides an approximation to the integral:

1
i
k= J fls)ds= "wifls) (6.72)
= =1

where n is the number of Gauss points, 5; the Gauss points, w; the Gauss weights, and fis;)
the function value at the Gauss point 5. The locations of Gauss points and weights are
derived in such a way that with n points, a polynomial of degree 2n — | can be integrated
exactly. Note that the integral domain is normalized, i.e., (-1, 1]. The Gauss quadrature
performs well when the integrand is a smooth function, Table 6.2 shows the locations of
the Gauss points and corresponding weights,

EXAMPLE 6.9 Numerical Integration

Evaluate the following integral using Gavss quadrature with 1~4 integration points, Compare the
numerical integration results with the analytical integration.

1
I= j (82 + 7o) dx
-1
SOLUTION It can be casily verified that the exact integral will yield I = 2. Now we assume that the exact
integral is unknown and calculate its approximate value using Gauss quadrature.
(a) 1-point integral:

¥ =, wy =12

fisn) =0

I=wfis)=2x0=10
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Ohbwvicusly, the one-point integral is not accurate.
(b} 2-point integral:
5 ==377, fls)=8(=5F71 + =577 = 0883 w; =1
$2=577, fls2) = 8(.577) +7(.577)° = 4303, wy =1
F=w flx ] + wy filxp) = 0882 + 4303 = 5185
2-point integral sull has a large error because it is accarate only up to the third-order polynomial.
(¢} 3-point integral:
f==7746, fin)=.17350, w;=.5556
£2 =010, iz =00 wz = B389
Xy =706,  fis)=2.8505 w;=.5556
=y f51) 4+ v fila) 4 ws Flaa) = 5556017350 + 2.8505) = 1.6800

(d) 4-point integral:
s =—218611, fis)=.0452, w = 3479
53 =—3400, f(s) = 0066, = 6521
$3=.3400,  f(s:) =.0150, wy = 652
55 = 8611, fl5) = 56638, wy = 3479
I=wy Fla) +ug fls)+ wa Fl5a) +wa ) =20

Note that the 4-point integral is exact up 1o seventh-order polynomials. Since the given problem is
seventh-order polynomial, the numerical integration is exact.

5
|

Two-dimensional Gauss integration formulas can be obtained by combining two one-di-
mensional Gauss quadrature formulas as shown bélow:

1= j J Fls, 1) dsdt

e [ZW}f{&}J]ﬂI (6.73)
LT |

=]

/] L]
— ZZW;H’J _,f-l:.!.'r'..szl
J=1 =l
where 5; and #; are Gauss points, m is the number of Gauss points in s direction, n is the
number of Gauss points in 1 direction, and w; and w; are Gauss weights. The total number
of Gauss points becomes mxn. Figure 6.23 shows few commonly used integration
formulas.

L i Y
® =
4 4
- > ® |
L x % & W 5 Fipure 6.23 Gauss
integration pommts in two-

(a) Ixl (b} 2m2 (e} 33 dimensional parent elements
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The element stiffness matrix in Eq. (6.71) can be evaluated using 2 x 2 Gauss integration
formulas:

k] = J J [B]" [C][B] ]| st

25 (6.74)
il

YD i [BCs 1)) [C)Blsi, 1] s 1)

i=] jul

EXAMPLE 6.10 Numerical Integration of Element Stiffness Matrix

Caleulate the element stillness malrix of the square element shown in Figure 6.24 using (a) 1 x |
Gaunss quadrature and (b) 2 = 2 Gauss quadrature. Compare the numerically integrated ¢lement
stiffmess matrix with the exact one caleulated using Eq. (6.39), Assume plane stress with thickness
h =10.1m, Young's modulus £ = 10 GPa, and Poisson’s ratio v = (1,25,

2m

IL@ @

2m

¥ @ @ ; Figure 6.24 Numerical integration of a square element

SOLUTION  Since the element size i3 the same as that of the reference clement, the Jacobian matrix be-
comes the identity matrix. Thus, from Eq. (6.68), the displacement-strain matrix [B] becomes

]—E+r ] 1 —1t 0 ] ¢ 0 =] - 0
[H]_i_l 0 —1 +x 0 —1 = 0 1+ 5 0 l—x

145 A+t —1—5 11—t T4+ 14+t 1—5 —1-—¢

{a) 1= | Gauss quadrature uses one-point integration at (s, 1) = (00, 0) with weight equal 10 4, The
| B matrix at this poimt becomes

¢ -1 0

R |

O

| -1 @ 1 @ i)
LIk e S e
-1 =1 =1 1 I
Then, the numerical inte gration of the element stiffness matrix becomes
[k ] = hwry ey [B(O, 03] [C][B{D, 0}

|_.3{:'.-‘ J67 =167 033 =357 167 167 0337
36T . W33 67T -167 =367 -.033 =167

J67° 167 A9 =033 -—.367 167

G367 B3 167 67 —367

367 167 —.167 —.033

367 033 A67

367 167

Symimetric 367 |

= 10
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(b} For 2 x 1 Gauss quadrature, we need four integration points and weights are unit,

Integration point & t
1 —. 5773502692 —. 5773502692
2 4. 5773502692 — 773502692
3 +. 3773502692 +. 5773502692
4 — STT3502692 - STTIS02692

Then, the numerical integration of the element stiffness matrix in Eq. (6.74) becomes

L
[hka] = > S v [Bsi, 1] (CIBEsy, 1] (55025}

=1 =l

|‘.43@ J67 —289 — 033 244 — 167 044 (33
489 033 044 —167 —244 —033 —7250
A8% —16F 84 —1PF —oda Q67

489 033 —2R0 67 —.244

A89 167 —28%0 — 33

: 489 033 44

Symmetric AB0 — 167
AR89 |

= 1P

Using the exact stiffness in Eq. (6.59), we can find that the clement stiffness matrix obtained from
2 » 2 Gauss quadrature is exact,

In general, the 2 x 2 Gauss quadrature is not exact for quadrilateral elements. The exact
results in the above example occur because the element shape is a square.

6.7.1 Lower-Order Integration and Extra Zero-Energy Modes

It is important that the proper order of Gauss quadrature should be used. Otherwise, the
element may show undesirable behavior. One of the well-known phenomena of lower-
order integration is extra zero energy modes. The zero-energy mode is the deformation of
an element without changing its strain energy. In plane solids, there are three types of
deformations (more precisely, motions) that do not change the strain energy: x-transla-
tion, y-translation, and z-rotation. Figure 6.25 illustrates these modes. Since the relative
locations of nodes do not change, the stress and strain of the elements are zero, and the
strain energy remains constant. In finite element analysis, these modes should be fixed by
applying displacement boundary conditions. Otherwise, the stiffness matrix will he singu-
lar and there will be no unigue solution.

While the zero-energy modes in Figure 6.25 are proper modes, there are improper
modes, called extra zero-energy modes, which often occurs when an element is under-
integrated. For example, a square element is integrated using 1 x 1 Gauss quadrature

¥
L.. P Figure 6.25 Three rigid-body mades of plans
x=translation y-translation zrotation  solids
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Figure 6.26 Two extra zero-energy modes of plane solids

there will be two extra zero-energy modes in addition to the three rigid-body modes,
Figure 6.26 illustrates the two extra zero-energy modes of plane solids. It is clear that the
element is being deformed but the centroid (the quadrature point) of the element does not
experience any deformation and hence the strain energy remains constant. In other words,
the element will deform without having externally applied forces, which is a numerical
artifact. Thus, the extra zero-energy modes must be removed in order to obtain meaning-
ful deformation.

The most common way of checking the extra zero-energy modes 15 using eigen val-
ves of the stiffness matrix. For a plane solid, the number of zero eigen values must be
equal to three. However, the element stiffness matrix with 1 x 1 integration will have five
zero eigen values corresponding to five zero energy modes shown in Figure 6.25 and Fig-
ure 6.26, In the following example, we will show another method of checking the extra
zero-energy modes.

EXAMPLE 6.11 Extra Zero-Energy Modes

Consider two stiffness matrices of the sguare element in Example 6.10: [k;] for 1 = L inlegration
and [ka] for 2 x 2 integration. When nodal displacements are given as {q}T= {0.1, 0, —0.1,
0, 0.1, 0, =0.1, 0}, check the reaction forces and determine if the stiffness matrix has extra zero-
energy mode.

SOLUTION

(a) For [k;] (1 x 1 integration), the reaction force can be calculated by multiplying the stiffness
matrix with the nodal displacements as

CA6T 67 167 —033 —3s1 —1857 | s s30T 00 0)

BeT AL e e = Sy sy 00 0

AT 8T ABT 3 =367 | 16T el 0

: T R - 1 e v 0.0 0
fr}{ag} = 107 TG Sy i ¢ i ) B el B
6T 033 167 0.0 0

Symmeine 36T - 167 01 i

as7| | oo o)

Mo foree is required to deform the element. Thus, the [k; | matrix has extra zero-cnergy mode,
{b) For [k:] (2 % 2 integration), the reaction force can be calculated by muoltiplying the stiffness
matrix with the nodal displacements as

M489 167 —280 —033 —244 — 167 44 0337 L) 4.89

y ARG 033 O —. 167 —.244 033 — 289 ] 4]

AR0 167 044 —033 —244 167 | | -1 459

. 480 033 —280 167 —.244 0 ; 0
kal{q} = 10” 459 167 —289 -033|) oa (=] as
489 033 (44 0 0

Symmetric 489 — 167 -(.1 —d 89

489 | o) [t

MNon-zero nodal forees are required to deform the element. Thus, the [ky] matrix does not have extra
zero-energy mode comesponding o the given deformation.
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6.8 PROJECT
Project 6.1 — Accuracy and Convergence Analysis of a Cantilever Beam

In this project, we want to compare the finite element results of plane solid elements with
those of uniaxial bar and beam elements. Consider a cantilever beam shown in Figure
.27 under horizontal and transverse forces at the tip. The beam has a square cross-section
of 0.1 m x 0.1 m, length of L = 1 m, Young's modulus £ = 207 GPa, and Poisson's ratio
=13

é_.. x 0.0 m IJ}—- Fy

Im Figure 6.27 Cantilever beam muodel

Part1

{a) Consider the case of F; = 100N and F> = 0. Solve the problem using & uniaxial
bar element to find the elongation u(x). Calculate ., and o,,. Assume that o, =
Ty = Ty = Tyr = Ty = . Compare the results with analytical solution.

{b) Consider the case of F; = 0 and F: = 500N. Sclve the problem using a beam
element to find the deflection wix). Calculate &, and oy,. Assume that o, = g, =
Ty = Ty = Ty = 0. Compare the results with analytical solution, Plot o, as a
function of y at x = Lf2,

Part IT

(a) Consider the case of F; = 100N and F; = 0. Solve the problem using: (i) 20 CST
elements and (ii) 10 rectangular elements to find the elongation ulx), Calculate &,
and a,,. Compare the results with those from Part 1. Explain the resulis using
interpolation scheme.

(b} Consider the case of F; = 0and F; = 500 N. Solve the problem using: (i) 20 CST

* alements and (ii) 10 rectangular elements to find the deflection wix). Calculate &,

and o,,. Compare the results with those of Part 1. Explain the results using inter-
polation scheme.

(¢) Consider the case of F; = 0 and F> = 500 N. Perform convergence study by grad-

ually decreasing element size and show the deflection and stress converge to the
exact solution.

Project 6.2 — Design of a Torgue-arm

A torgue arm shown in Figure 6.28 is under horizontal and vertical loads transmitted from
a shaft at the right hole, while the left hole is fixed. Assume: Young's modulus =
206.8 GPa, Poisson’s ratio = 0.29, and thickness = 1.0 em.

1. Provide a preliminary analysis result that can estimate the maximum von Mises
skress.

2. Using plane stress elements, carry out finite element analysis for the given loads.
Clearly state all assumptions and simplifications that you adopted in modeling.
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All dimensions in em

i (i 25 4;2
Fix ‘1:"_—) ! TRUN
I','
i 3 B 42 i) Figure 6.28 Dimensions of
e 2 torgue arm model

Carry out convergence study and determine the size of elements for a reasonably
accurate solution.

6.9 EXERCISE

1. Repeat Example 6.2 with the following element connectivity:

Element 1; 1-2—4
Element 2: 2-3-4

Does the different element connectivity change the resalts?
2. Solve Example 6.2 using one of the finite element programs given in the Appendix,

3. Using two CST clements, solve the simple shear problem depicted in the figure and determine
whether the CST elements can represent the simple shear condition accurately. Material proper-
ties are given as E = 100GPa, v = 0.25, and thickness is i = 0.1 m. The distributed force =
100 KMN/m? is applied at the top edge.

4. Solve Example 6.4 using one of finite ¢lement programs in the Appendix.

5. A structure shown in the figure is modeled vsing one triangular element. Plane strain assump-
tion is wsed,

{a} Calculate the strain-displacement matrix [B].

(b} When nodal displacements are given by {uw, v, uz, v2, w3, w3} = {0, 0, 2, 0, 0, 1},
calculate element strains,

$>®m,zm

@i10,10)

Poon
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6. Calculate the shape function matrix [N] and strain-displacement matrix [B] of the wiangular
element shown in the figure.

@i

@O0 D00

7. The coordinate of the nodes and corresponding displacements in a triangular element are given
in the table. Calculate the displacement u and v and strains &, £, and ¥x Al the centroid of the
element given by the coordinates (1/3, 1/3)

Mode x{m} v {m) i (m) v (m)
I 0 ] o] 0
2 1 1] L1 0.2
] 1 0 0.1

8. A2m » 2m x | mm square plate with £ = T0GPaand v = 0.3 is subjected to a uniformly dis-
tributed load as shown in Figure (2). Due to symmetry, it is sufficient to model one quarter of
the plate with artificial boundary conditions, as shown in Figure (b), Use two triangular ele-
ments to find the displacements, strains, and stresses in the plale. Check the answers using
simple caleulations from mechanics of materials,

@y = 100 MPa

TYYYYRNY

Ty = 1K) MPa

Im

8 565 2 e o A i g

Oy = 100 MPa

9. A beam problem under the pure bending moment is solved usin & C5T finite elements, as shown
in the figure. Assume E = 200GPaand v = (.3, The thickness of the beam is (.01 m, To simu-
late the pure bending moment, two opposite forces F = +100, 000N are applied at the end of
the beam. Using any available finite element program. caleulate the stresses in the beam along
the neutral axis and top and bottom surfaces. Compare the numerical results with the elemen-
tary theory of beam. Provide an element stress contour plot for a,.,.

I S5m
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0. For a rectangular element shown in the figure, displacements at four nodes are given by
Lo, v, ug, v, us, vs, 0y, va} = {00, 0.0, 1.0, 0.0, 2.0, 1.0, 0.0, 2.0}, Caleulate displace-
ment (. v) and strain &, at point (x, y) = (2, 1.

¥
t‘i (0.2) 3(3.2)

Ll
1 2{3.0)

11. Six rectangular elements are used to model the cantilevered beam shown in the figure. Sketch the
graph of o, along the top surface that a finite element analysis would yield. There is no need 1o
actually solve the problem, but use your knowledge of shape functions for rectan gular elements,

15 0 A

12, A rectangular element as shown in the i gure is used to represent a pure bending problem, Due
to the bending moment M, the clement is deformed as shown in the figure with displacement
{a} = {or, vy, wz, w2, 0, T3, My, f:4}T= {=1,0, 1,0, 1,0, 1. {}}T,

(2} Write the mathernatical expressions of strain component Exnibiyy, 800 ¥y, 85 functions of x
and v,

{b) Does the element satisfy pure bending condition? Explain vour answer,
i) If two CST elements are used by connecting nodes [-2—4 and 4-2-3, what will he £, along

line A-B?
."'I
F Y 14
440,2) 332 B ! 3
H i
M C A (EoD :
i
'__h" X I -
1 {00 (3,00 i i 8 I

13. Five rectangular elements are used to model 2 plane beam under pure bending. The element in
the middle has nodal displacements, as shown in the figure, Using the bilinear interpolation
scheme, caleulate the shear strain along the edge AB and compare it with the exact shear strain.

HLEY) = O+ @x Oy + gy

i) = By + B+ Bov + By |"E*| a=1 mm "E"J

—————— Original element
—— Deformed element
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14. A uniform beam is modeled by two rectangular elements with thickness b, Qualitatively, and
withoul performing calculations, plot oy, and ©, along the wop edge from A to C, as predicted
by FEA. Also, plot the exact stresses according to beam theory.

15, A beam problem under the pure bending moment is solved using five rectansular finite ele-
ments, as shown in the figure. Assume E = 200GPaand v = 0.3 are used. The thickness of the
beam is 0,01 m, To simulate the pure bending moment, two opposite forces £ = £100, 000N
are applied at the end of the beam. Using a commercial FE program, calculate strains in the
beam along the bottom surface. Draw graphs of &, and y,,, with x-axis being the beam length.
Compare the numerical results with the elementary theory of beam. Provide an explanation for
the differences, if any. Is the rectangular element stiff or soft compared to the CST element?

Normally, a commercial finite element program provides stress and strain at the corners of
the element by averaging with stresses at the adjacent elements. Thus, you may use nodal dis-
placement data from FE code to caleulate strains along the bottom surface of the element, Cal-
culate the strains at about 10 points in each element for plotting purpose. Make sure that the
commercial program vses the standard Lagrange shape function.

-l
e E

| 2 3 4 a I m

e
-

r
am | F

|-L

Repeat the above procedure when an upward vertical force of 200,000 N is applied at the tip of
the bearn. Use boundary conditions similar to the clamped boundary conditions of a cantilev-
ered beam.

16. The quadrilateral element shown in the figure has the nodal displacement of fug, vy,
Wz, W, s, ta, dg iy ={=1,0,-1,0,0,1,0, 1}

(a} Find the (s, 1) reference coordinates of point A (0.3, (1) using iso-parametric mapping
method.

{b) Calculate the displacement at point B whose reference coordinate is (s, 1) = (0, —0.5)
(¢) Calculate the Jacobian matrix [J] at point 8.

L 3%}
@ L @

Physical Element Reference Element
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17. A four-node quadrilateral element is defined as shown in the figure.
(a) Find the coordinates in the reference element comresponding 1o (x, v} = ({0, 0.5).
(b} Calculate the Jacobian matrix as a function of & and 7.
(¢} Is the mapping valid? Explain your answer.

-1 : +1

ER

18. A quadrilateral element in the figure is mapped into the reference element.
{a) A point P has a coordinate (x, y} = (%, ¥} in the physical element and {5, th = (=Y, 1] in
the parent element. Find the ¥ and t coordinates of the point using iso-parametric mapping.
{b) Calculate the Jacobian matrix at the center of the element.
() Is the mapping valid? Explain your answer.
Y
3(0.2)

4
4(-1.1) 3L

20L1)

Y
W

—

4(0.0) o 1(=1,-1) 2(1,-1)

19, Consider the plane stress four-node element shown below. Its global node numbers are shown

in the figure. The coordinates of the niodes in the global x-y coordinate systems is shown next o
each node.

g4 | ¥ P
(0,1) (1,1
(000 0
5] 52 x

The elemenl connectivity is as follows:

Element # Local Node 1 Lacal Node 2 Local Node 3 Local Node 4

27 51 32 63 64
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MNodal displacement  vector = {q}"r= {us1, vs1, wsz, wsz, Mas, Yea, tes, v} = {0, 0, 0.1, 0,

0.1, 0.1, 0, 0}.

(&) Determine the displacement at the point (x, ¥) = {0.75. 0.75) by interpolating the nedal
displacements.

(b} Compute the Jacobian matrix at the poing in {b).

(e} Compute sirain &, at the center of the element.

. A lincarly varying pressure p is applied along the edge of the four-node element shown in the
figure. The finite clement method converts the distributed [oree into an equivalent set of nodal
forces {F7 ) such that

[uTTd.‘.f = {g'} (F

where T is the applied traction (force per unit area) and v is the vector of displacements, Since
the applied prressme is normal to the surface (in the x-direction), the traction can be expressed as

T ={p. 0} where p can be expressed as p= pylt +1)/2, t = =1 at Node 1 and r = +1 at
Noede 4. The length of the edge s L. Integrate the Ici’:-ha}ad side of the above equation 1o com-
pute the work-equivalent nodal forces (F'') when {q'“'} = {u, v, wa, v, w3, vy, ws, 4}
&l
% 3
= N
L

1 2
Determine the Jacobian matrix for the following isoparametric elements. If the emperature
at the nodes of both elements are {7, Ts, T3, Ty} = {100, 90, 80, 90}, compute the tempera-
ture at the midpoint of the element and at the midpoing of the edge between connecting Nodes |
and 4.

2112y 1{2.12)
2(0.4) 105.4)

300 A (18.0)

3(L1) 421}

Integrate the following function using one-point and two-point numerical integration {(Gauss
quadrature). The exact integral is equal to 2. Compare the accuracy of the numerical integration
with the exact solution,

T
I =j sinf) &
i}

A six-node finite element as shown in the figure is used for approximating the beam problem.
(a) Write the expressions of displacements u(x,y) and v(x,y) in terms of polynomials with un-
known coefficients. For example, uix, v) = ap +ax+ -+ .

ib} Can this element represent the pure bending problem accurately? Explain your answer,
Bending moment M is applied at the edge 2-3.
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(¢} Can this element represent a uniformly distributed load problem accurately? The distribut-
ed load g is applied along the edge 4-6-3.

Z

f 6 3

24. Consider a quadrilateral element shown in the figure below. The nodal lemperatures of the ele-
ment are given as {Ty, T2, T3, Ty} = {80, 40, 40, 801,

{a) Compute the expression of the temperature T along the line £ that connects Nodes 3 and 1.
For example, T = 3 + 56 + 38> + -+, You can assume that £ = 0 at Node 3 and § = 1 at
MNode 1. Plot the graph of T{£) with respect to £,

(b} Compute the temperature gradient 87 /dr at the center of the element.

204 1 {44}

30mL S 4(60)
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