___chapter five

Two-Dimensional
Problems Using Constant
Strain Triangles

5.1 INTRODUCTION

The two-dimensional finite element formulation in this chapter follows the steps
used in the one-dimensional problem. The displacements, traction components, and
distributed body force values are functions of the position indicated by (x, v). The
displacement vector u is given as
v = [u, o] (5.1)
where « and v are the x and y components of u, respectively. The stresses and
strains are given by
o= [CI',., !Trs T’E‘J' [52’}
€ = [e, &, Yol (5.3)
From Fig. 5.1, representing the two-dimensional problem in a general setting, the
body force, traction vector, and elemental volume are given by
= [ A5l T=[T.,TL]' and 4V =1dA (5.4)

where  is the thickness along the z direction. The body force f has the units force/
unit volume, while the traction force T has the unils force/unit area. The strain—
displacement relations are given by

gu ov [ouw  duy |
= |—.,— —_— 4+ — ]
s [ﬂx’ Ay’ (ay dx)] (5.3

Stresses and strains are related by (sec Eqs. 1.18 and 1.19)
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t = thickness at {x, ¥l

1. f, = body force components
a pee unitvolume ot {x, ) Figure 5.1 Two-dimensional problem.
o = De (5.6)

The region is discretized with the idea of expressing the displacements in terms
of values at discrete points. Triangular elements are introduced first. Stiffness and
load concepts are then developed using energy and Galerkin approaches.

5.2 FINITE ELEMENT MODELING

The two-dimensional region is divided into straight-sided triangles. Figure 5.2
shows a typical triangulation. The points where the corners of the triangles meet are
called nodes, and each triangle formed by three nodes and three sides is called an
element. The elements fill the entire region except a small region at the boundary.
This unfilled region exists for curved boundaries and it can be reduced by choosing
smaller elements or elements with curved boundaries, The idea of the finite element
method 15 1o solve the continuous problem approximately, and this unfilled region
contributes to some part of this approximation. For the triangulation shown in Fig.
5.2, the node numbers are indicated at the corners and element numbers are circled.

In the two-dimensional problem discussed here, each nodc is permitted to dis-
place in the two directions x and y. Thus, each node has two degrees of freedom
(dof’s). As seen from the numbering scheme used in trusses, the displacement com-
ponents of nide f are taken as O in the x direction and 2y, in the y direction. We
denote the global displacement vector as

Q=[x ....0] (5.7)

where W is the number of degrees of freedom.

Computationally. the information on the triangulation is to be represented in
the form of aodal coordinates and connectivity. The nodal coordinates are stored in
a two-dimensional array represented by the total number of nodes and the two coor-
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Figure 5.2 Finite element discretization.

dinates per node. The connectivity may be clearly seen by isolating a typical ele-
ment, as shown in Fig. 5.3. For the three nodes designated locally as 1, 2, and 3,
the corresponding global node numbers are defined in Fig. 5.2. This clement con-
nectivity mformation becomes an array of the size of number of elements and three

Figure 5.3 Trangular element.
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nodes per elemsnt. A typical connectivity representation is shown in Table 5.1
Most standard finite element codes use the convention of going around the element
in a counterclockwise direction to avoid calculating a negative arsa. However. in the
program that accompanies this chapter, ordering is not necessary.

Tuble 5.1 establishes the correspondence of local and giobal node numbers and
the corresponding degrees of freedem. The displacement compunents of a Incal node
Jjin Fig. 5.3 are represented as gy, and gy in the x and v directions, respectively.
We denote the element displacement vector as

(e T O | (5.8

INote that from the connectivity mafrix in Table 5.1, we can exfract the g vector
from the global @ vector, an operation performed fraquently in a finite element pro-
gram. Also, the nodal coordinates designated by (x,. ¥uby (22, o), and (x5, ) have
the global correspondence established through Table 5.1 The local representation of
nodal coordinates and degrees of freedom provides & setting for a simple and clear
representation of clement characteristics.

TABLES.1 ELEMENT COMNMECTIVITY

Three nodes
Elemen: number
¢ 1 2 3
1 1 2 <
2 " 2 7
11 6 T 1i
20 13 16 15

5.3 CONSTANT STRAIN TRIANGLE (CST)

Ihe displacements at points inside ar. element need 10 be represanted in terme of the
nodal displacements of the element. As discussed eatfier. the finite element method
uses the concept of shape functions in systematically developing these interpolations.
For the constant strain triangle, the shape functions are linear over the element. The
three shape functions Ny, N:, and N corresponding Lo nodes 1. 2, and 3, respec-
tively, are shown in Fig. 5.4. Shape function V, is 1 at node | and linearly reduces
to (t at nodes 2 and 3. The values of shape function N, thus define a plane surface
shown shaded in Fig. 5.44. N and AV, are represented by similar surfaces having val-
ues of 1 at nodes 2 and 3, respectively and dropping to 0 at the vpposite edges. Any
linear combination of these shape functions also TCPIESEnts a nlane surface. In par-
ticular, Ny — N2 + N, represents a plane at 2 height of | at nodes 1, 2, and 3. and.
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[oh

Figure 5.4 Shape functions.
thus, it is parallel o the triangie 123, Consequently, for every N, M, and s,
L Ny + Na+ Ny=1 . 5.9}

Ny, N2, and N» arz therefore not linearly independent; only two of these are inde-
pendent. The independent shape functions are conveniently represented by the pair
£, 1, as follows

M=¢f Ni=q N=1-£f-7 (5.10)

where &, n are natral coordinates (Fig. 5.4). At this stage, the similarity with the
one-dimensional element (Chapter 3) should be noted: In the one-dimensional prob-
lem the x coordinates were mapped onto the £ coordinates and shape functions were
defined as functions of £ Here, in the two-dimensional problem, the x, vy coordi-
nates are mapped onto the &, 7 coordinates and shape functions are defined as func-
tions of £ and 7.

=
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The shape functons can be physically represented by area coordinates. A
point (x, y) in a triangle divides it into three areas, A;, Az, and As, as shown in Fig.
5.5. The shape functions N;, N;. and N are precisely represented by
Ay o iy
% o0
where 4 is the arca of the element. Clearly, Ny — N> + N; = 1 at every point in-
side the trianple.

(5.11)

=0

N7

R

E=1 Figure 5.5 Area coordmates.

Isoparametric Representation
The displacements inside the element are now written using the shape functions and
the nodal values of the unknown displacement field.
k= Mg+ Nigs + Nags
_ (5.124)
T N| gz i qu.: =+ 1“:'3.{{5
or using Eq. 5.10,
=g — g} + (g: — galm + gs
U= (g: — gal + (@ — ga)n + G

The relations 5.12a can be expressed in a matrix form by defining @ shape function
matrix N,

(5.128)

H=[f\1 TR . [l'} (5.13)

L 0 Ny 0 N 2 0 NS
and

u= Ng i5.14)
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For the triangular element, the coordinates x. v can also be represented in terms of
nodal coordinates using the same shepe functions. This is isoparametric represen-
tation. This approach lends to simplicity of development and retains the uniformity
with other complex eslements. We have

=N+ Mo + N
(3. 15a)

¥ = Mn+ Ny + Nays
ur

X = ':..-T] = -":S)E + {Iz — IJJ?} 4= rs
. [5.155)
y=m—mEte—rntn
Using the notation, x; = & — X and ¥y = ¥ — ¥, we can write Eq. 5.15b as

B e L i L (e
(5.15¢c)
Y= Y& + yun + ¥
This equation relates x and y coordinates to the £ and n coordinates. Equation 5.12
expresses ooand voas functions of £, 7.
Exampie 5.1

Evaluate the shape [unctions Ny, N5, and N5 al the inverior point # for the rizngular el-
ememt shown m Fig. ES.1.

¥

344, 7

a
/ P 1305 4.3)

2 {7, 35

L x Figure B5.1 Examples 3.1 and 5.2,

Solution  Using the isoparametric representation (Eqs. 5.15), we have
385 = LEN. + TN + dly = =258+ 39 + 4
43 =2N, + 35N, = TMz= —5¢ - 3.5 + 7
The two equations above are rearranged in the form
258 — In =10.15
i+ 35m=23
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Selving the equations, we obtain £ = 0.3 and 5 = 0.2, which implies
N=03 M=02 N-=05 E
In evaluating the strains, partial derivatives of u and v are to be taken with respect
to x and y. From Egs. 5.12 and 5.15, we see that v, ¢ and x, ¥ are functions of £ and
n. That is, u = w(x(£, ). ¥(£, n)) and similacly © = vix(£, n). v(£ 7). Using
the chain rule for partial derivatives of i, we have
fu_oudx | ouy
df  dx df  dv of
Bu_ oudx | udy
g dx dm Ay dn
which can be written in matrix notation as

[ﬂ' E.ﬁmﬂ
af | | ag aE|| ax
Lou [~ ax oy || au Rl
& gm  an || dy
where the (2 % 2) square matrix is denoted s the Jacobian of the transiormation, J:
5 o]
=1 % (5.17)
ox ay
| dn i |

Some additional properties of the Jacobian are given in the Appendix. On taking the
derivative of x and y.

'] = Xz ,‘FJE':[ 1:513,'
X5 Y=
Also, from Eg. 5.16,
L] o
dx e i { —_—
n J au (5.19)
ety 1
where J™' is the inverse of the Jacobian J. given hy
Y = 1 ¥ ¥
J det .] |:—x-.-.: JCL?J {5 2[]:]
det J = x5y — avn (5.21)

From the knowledpe of the area of the triangle. it can be seen that the magnitnde of
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det J is twice the area of the triangle. If the points 1. 2, and 3 are ordered in 2 coun-
terclockwise manner, det J is positive in sign. We have

A = Ydet J| (5.22)

where | | represents the magnitude. Most computer codes use a counterclockwise or-
der for the nodes and use det J for evaloating the area.

Example 5.2

Determine the Jacobian of the transfermation J for the triangular element shown in
Fie. E5.1.

Solotion Wt have
J i [.3213 _}'|3+ s |:"'25 -51)
il JnﬂJ L o306 -3

Thus, det J = 23,75 units. This is twice the area of the triangle. If 1, 2, 3 arein a
clockwise order, then det .J will be negative. E

Ly

From Eqgs. 3.19 and 5.20. it follows that

ke ot  du

| - *‘"3"52_"""’55]
= L= m i aisk (5:23a)
ﬁ_}" — 15 ;f TR E

Replacing « by the displacement v, we get a similar expression

l [ 1 E a1 Y} ﬂ_ﬁ
x| _ 1| T M (5.238)
EI- dﬂtilf_rg}l_._.r_?ﬂr [
lay- :h 'zaﬁ-f"”&‘rrj
Using the strain—displacement relations (5.5) and Egs. 3.12b and 5.23, we get
[ u
ax
e=1 2
ay
L
dy  dx
1 vl — gs) — wialgs — gs)

~ detJ ~Znig: — qs) + 3l — gl
—Tnlqi = gs) + %ulgs — @) + yalgs = g0) — yules — go)
5. 24)
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From the definition of Xy and Vi, WE Can write ¥a = ¥ and M= Yy =
Vi3, and so on. The above equation can be written in the form
Magr + Vaigs + Y
€ = ——4 Xnip + Ty T I {:?.EAE:}
det J
xmqr + yuge * dngs + ¥uge T Xngs — Viage
The above equation can be writlen in matrix form as

e = By [5:25)
where B is a (3 X 6) element strain—displacement matrix relating the three strains to
the six nodal displacements and is given by

; X O ¥y O ys O
B = df:-t i 0 xg O 2z O zy {3.26)
M3z Yo Xy Mmoo Lo ¥

It may be noted that all the elements of the B matrix ars constants expressed in
terms of the nodal coordinates.

Example 5.3

Find the sirzin—nodal displecement matrices B* for the elements shown in Fig. E5.3.
Use local numbers given &t the corners.

Solotion  We have

0
0
3

where det .J 35 obtained from xs3a: — ey = (3)(2) — (3HO) = 6. Using the local
numbers at the corners. B can be written using the relationship as
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BZ:E ] 3 i =3 o740
3 =3 5 09 2 =
Potential Energy Approach

The poteatial energy of the system, II, is given by

&

1= éJ e'Der dA ~ j u'ft dA — f w'Ttdt — ZafP,  (5.27)
= Jq A L i

In the last term above, i indicates the point of application of a poeint load P/ and

P, = [P,, P,]T. The summation on i gives the potential energy due to all print loads.

Using the triznguiation shown in Fig. 5.2, the total potential snergy can be

written in the form

M=% % jETDEI dA - 2 (u‘"f: g4 = J‘ u"Tr 4¢ — > ufP, (5.28a)
P % = i |

e

ar

N=31-2 fqur dA — J w'T df — 2 uP, (5.28h)

"Ie L
where U, = } [ €"Det dA is the element strain energy.

Element Stiffness

We now substitute for the strain from the element struin=—displacement relationship in
Eg. 5.25 into the element strzin energy O, in Eq. 5.285, to obtain

3 | s

Li"e ==

_J[ ETDEI l'i.!"'.ll
I - . {5.29a)
= /' a’B"DByr dA

'

t

Taking the element thickness 7, as constant over the element. and since all rms in
the D and B matrices arc constants, we have

B g rnf:nmﬁ(f dA Jq (5.29%)

®

Now, [. dA = A., where A, is the area of the element. Thus,
U. = 4q'1.A.B"DBqg [5.29¢)

U, = tq'k'y (5.294)
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where k* is the slement stiffness matrix given by
k= .A.B'DB (5.30)

For plane stress or plane strain, the element stiffness matrix can be obtainad by
taking the appropriate material property matrix D defined in Chapter 1, and carry-
ing out the above multiplication on the computer. We note that k* is SYMMSric since
D is symmetric. The element connectiviry as established in Table 5.1 i now used to
add the clement stillness values in k° into the corresponding global locations in the
global stiffness matrix K, so that

1
U=3 3 q'kg
{5.31)
Q"KQ

lod | e

The global stiffness matrix K is symmetric and banded or sparse. The stiffness valus
Ky is zero when the degrees of freedom ¢ and j are not connected through an ele-
ment. If i and f are connected through one or more elements, stiffness values acen-
mulate from these elements. For the glebal dof numbering shown in Fig. 5.2, the
bandwidth is refated to the maximum differencs in node numbers of an element,
over all the elements. If 7. i:, and i; are node numbers of an element e. the maxi-
mum clement node number difference is given by

m. = max (i — &f, [&= &) |6 - i) {3.32a)
The half-bandwidth is then given by
NBW = 2[ max  {m + ]] {5.328)
1=¢=NE

where NE is the number of elements and 2 is the number of degrees of freedom per
node.

The global stiffness K is in a form where all the degrees of freedom Q are
free. It needs to be modificd to account for the boundary conditions.

Force Terms

The boedy force term [, u™fr dA appearing in the total potential energy in Eq. 5.28b
is considered firse. We have,

f u'fi 44 = ¢, J_ luf, 4+ vf) dA

(3 v

Using the interpolation relations given in Ey. 3.12a, we find

j u'fr dA = q:(feﬁj N, dA ' - Q'E(f*fj (Nl d"‘i)
i o

L L3
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+ q:.(:,:ﬁj N dﬂ) + q;(r.,ﬁj N mn.) (5.33) |

o q-s(f._ﬁ; J N‘l da‘q.) + q's(fnfu J !"‘Irl EIA)
3 € : &

From the definition of shape functions on a triangle, shown in Fig 5.4, Jo Ny dA rep-
resents the volume of a tetrahedron with base area A, and height of corner squal to |
(nondimensional). The volume of this tetrahedron is given by T % Base area X
Height (Fig. 5.6).

j NiodA = 1A, . (5.34)

Similarly, [, NodA = [, Ny dd = L A.. Equation 5.33 can now be written in the
form

-
| u'fr dA = q7F (5.35)

where {° is the element body force vector, given as

ol &
e T[ﬁ-f:-:ﬁa.l?uﬁnh]-l r536'|'

X TS

€
el
o Ju RSy e

1 prim=§
J Wy det don of = 24,
4 ‘&

Figure 5.6 Integral of 2 shape function.
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These element nodal forces contribute to the global load vector F. The connectivity
in Table 3.1 needs to be used again 10 add £ to the giobal force vector F. The vector
f* is of dimension (6 X 1), wherzas F is (N x ). This assembly procedure ig dis-
cussed in Chapters 3 and 4. Stating this symbolically,

F —— NP (5.37)

A traction force is a distributed load acting on the surface of the body. Such a
foree acts on edges connecting boundary nodes. A traction force acting on the edge
of an element contributes to the global load vector F. This contribution can be de-
termined by considering the traction force term [ u' Tr d€. Consider an edge £,_..
acted on by a traction T, T, in units of force per unit surface area, shown in Fig.
5.7. We have

f u'T df = [ (uT, + oTy)r d€ (5.38a)
L ==z
Using u = Ng, we got

F

f HTTI df = ?l(f.-?:"‘ﬁlﬂ iﬂ:) + Qz(!er-r J’.li\l‘rl df')

e L e
=+ q‘;;l\i:rj:-. ‘ M- ﬂ'{') o q;[ I,;-T-..J N d{;’)

R
4

= Figure 5.7 Traction load.

We note here that Vs is zero along the edge 1-2, and N, and N are similar to the
shape functions in one dimension satisfying N; + N; = 1. Each of the integrals in
Eqg. 5.38b above equals one-half the base length £, times the height (=1):

N df = 34, (5.39)

“fi-a
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where

£z = 1"r"lr':x‘3 — 5P+ '::,‘I-'i —— _‘J-"I:]z

The traction term is now given by

J wTide =q°T" (5.40)
£

where @ is the set of nodal degrees of freedom corresponding to the edge 1-2. That

is,

a=[g. ¢ a.al _ (5.41)

and
f.e'fia] o - %
T =—"[%%If (5.42)

The traction load contributions need to be added to the global force vector F.
The point load term is casily considered by having a node at the point of appli-
cation of the point load. If i is the node at which P, = [P., P.J" is applied, then
P = Qua P + Q25 (5.43)

Thus, P. and P,, the x and y components of P;, zet added to the (2¢ — 1jth and
{2iith components of the global force F.

The contribution of body forces, traction forces, and point loads to the global
force F can be represented as F < Z.0* + T + I

Consideration of the strain energy and the force terms gives us the total poten-
tial energy in the form

M =1Q'KQ — Q'F (5.44)

The stiffness and force modifications are made to account for the boundary condi-
tions. Using the methods presented in Chapiers 3 and 4, we have

KQ=F . (5.45)

where K and F are modified stiffness matrix and force vector, respectively. These
equations are solved by Gaussian elimination or other techniques, to yield the dis-
placament vector Q.

Galerkin Approach

Following the steps presented in Chapter 1, we introduce

b =[o., & 15.46)
and

} iy A, Beb. a@]T ,
= |[—== =, o — 14‘?
eld) [ e S o {5.47)
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where ¢ is an arbitrary (virtual) displacement vector, consistent with the boundary
conditions. The variationa! form is given by

f ole(dr dA — (J &'ft dA + J‘ & Tr dl + q:E'P,J = {5.48)
W Ml & 3

where the firs! term represents the internal virtual work, The expression in paren-
theses Tepresents the external virtual work. On the discretized region, the above
equation becomes

5 f € Deldp)r dA — (2 f.;,rf: dA + f &' Tedl + 5 d:?n] =0 (5.49)

v 2 Jl

Using the interpolation steps of Egs. 5.12-5.14, we express

b = Nis (5.50)
€ldh) = Bus (5.51)

where
= [Un, un, s, th, s, ths]" £5.52)

represents the arbitrarv nodal displacements of element ¢. The global nodal dis-
piacement variations W are represented by

W = [1}':, 1'1"1, RPN, "'!"".'L]T fi.SS}
The element internal work term in Eq. 5.49 can be expressed as

J- € Deid)r da = f q"B DBt da

e

Noting that all terms of B and D are constant, and denoting 1. and A, as thickness
and area of element, respectively, we find

f € De(d) dA = ¢"B" DBy, j dA s

= 4" A.B"DBus {3.54)

= gk

where k* is the element stiffness matrix given by
k"= r.A.B'DB {5.55)

The material property matrix I is symmetric, and, hence, the element stiffness ma-
trix is also symmetric. The element connectivity as presented in Table 5.1 is used in
adding the stiffness values of k* to the giobal locations, Thus.
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2 J € Deld)t dd = 2, ¢k = 2. 4'k'y

i (5.56)
= WTKQ

The global stiffness matrix K is symmetric and banded. The weatment of external
virtual work terms follows the steps involved in the treatment of force terms in the
potential energy formulation, where u is replaced by &. Thus,

J¢.Tr: dA = W't (5.57)

which follows from Eq. 3.33, with f* given by Eq. 5.36. Similarly, the traction and
point load treatment follows from Egs. 5.38 and 5.43. The'terms in the variational
form are given by

Internal virtual work = WIKQ {5.58a)
External virtual work = W'F {5.585)

The stiffness and force matrices are modificd to use the fuil size (all degrees of fres-
dom}, using methods suggasted in Chapter 3. From the Galerkin form (Eq. 3.49),
the arbitrariness of W oives

KQ=F (5.59)

where K and F are madified to account for boundary conditions. Equation 5.50
turns out to be the same as Eq. 5.45, obtained in the poteatial energy formulation.

Stress Calcufations

Since strains are constant in 4 constant strain triangle (CST) element, the corre-
sponding stresses are constant. The stress values need to be calculated for each ele-
ment. Using the stress—strain relations in Eg. 5.6 and element strain—displacement
relations in Eg. 5.25, we have

o = DBq (5.60)

The connectivity in Table 3.1 is once again needed to extract the element nodal dis-
placements g [rom the global displacements vector Q. Equation 5.60 is used to cal-
culate the element stresses. For interpolation purposes, the calculated siress mayv he
used as the value at the centroid of the slement.

Principal stresses and their directions are calculated using Mohr's circle rela-
tionships. The program at the end of the chapter includes the principal stress calenla-
fons.

Detailed calculations in the example below illustrate the steps involved. How-
ever, it is expected that the exercise problems at the end of the chapter will be
solved using a computer.
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Example 5.4

For the two-dimensional loaded plate shown in Fig. E5.4, determine the displacements
of nodes 1 and 2 and the element stresses using plane stress conditions. Body force may
be neglected in comparison to the external forces.

1000 b

3in - I
Thicknaes £ = 06 Ir., £ =30 % 10 psi, v= 025 Figure E5.4

Solation For plane stress conditions, the material property marrix is given by

) i 32 % 1Y 0.8 1 ] 1
Pt b 8 [olopxiot szxir 0
1 — .
I -
o 0 ‘"":E_r 0 0 1.2 % 107

Using the local numbering pattern used in Fig. B35 3. we establish the connestiv-
ity as follows:

Mo es
Eizment Mo. 1 2 3
1 2 A
2 ] i 2

| On performing the matriz mutbiplication DB, we get

1067 =04 0O 04 -—1.067 0
DB =107 0267 =16 0O 16 =0.267 0
=h G4 D6 O Lt =14
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and
—1.067 0.4 L -0.4 1.067 O
DB* = 107 =0.267 1.5 0 —-1.46 0267 O
0.6 -4 =06 D 0 0.4

These two relationships will be usad later in calculating stresses using o = DBfq. The
multiplication £, A, B® DB gives the element stiffness matrices,

Global
T 2 3 4 5 G —dof
[0.083 —0.5 -045 02 -0.533 03]
14 03 —-12 @82 —-pa
k' = 10 045 0 i) 0.3
12 ~0.2 0
Symmetric 0.533
n.2
Glabal
g B 7 B 3 4_<—dﬂf
(0987 —05 -045 02 —0.533 03
14 063 -12 02 —02
k' = 10 045 0 0 -0.3
12 —G2 0
Symmetric 0.533 0
0.2

Ini the above clement matrices, the global dof essociation is shown on top. In the
problem under consideration, ¢, s, @5, 07, and @y are all zero, Using the elimina-
tion zpproach discussed in Chapter 3, it is now sufficient to consider the stiffnesses
agsociated with the deprees of freedom @y, (Ja, Q.. Since the body forces are
neglected, the force vector has the component £ = — 1000 lb. The set of equations is
given by the matrix representation

0983 ~045 02700 "0
07| -04s 0983 0 [{@.b _{ 0
0.2 o 1.4|los — 1000

Solving for §y, &5, and 04, we gt
&y = 1.913 % 103 in. g = 0875 » 1077 in. 2, = —=7.436 »x 107 in.
For element |, the element nodal displacement vector is miven by
q' = 1077[1.913, 0. 0.875, —7.436, 0. 0T
The element stresses o are caloulated from DB'q as
o' = [~93.3, —1138.7, —62.3]psi
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Sumitariy
q° = 10770, 0, 0, 0, 0.875, —7.438]
o' = [93.4, 23.4, —297 4T psi

The computer results may differ slightly since the penalty approach for handling boun-
dary conditions is used in the computer program, E

Temperature Effects

If the distribution of the change in temperature AT (x, v) is known, the strain due to
this change in temperature can be treated ac an initial strain &, From the theory of
mechanics of solids, & can be represented by

€, = [aAT, ¢AT, 0] {(5.61)
for plane stress, and
€ = (1 + v)[@AT, aAT, OT (5.62)
for planc strain. The stresses and strains are related by
¢ = Dle — &) £3.63)

The cffect of temperature can be accounted for by considering the strain energy
term. We have

~

1
U=EJ{E ~ €"Die — &)t dA
] (5.64)
=z J’IiETDE — 2e"De; + elDey)t dA
The first term in the expansion above gives the stiffness matrix derived before. The
last term 15 a constant, which has no effect on the minimization process. The middie
term, which yields the emperature load, is now considered in detail. Using the

strain—displacement relationship e = By,

j €'Det dA = 2 q"(B"Deait. A, (5.65)
A v
This siep is directly obtained in the Galerkin approach where €” will be €7(¢b) and q’
will be 7.
It is convenient to designate the element temperature load as
0" = ,A.B'De, (5.66)

where

e = [Ej i e:, Ba, 'EL. e:., 'Bt.]'r I'Sﬁ'?]
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The vectar €, is the strain in Eg. 3.01 or 3.62 due to the average temperaturc changs
in the element. ©° represents the element nodal load contributions that must be
added to the global force vector using the connectivity.

The stresses in an clement are then obtained by using Eq. 5.63 in the form

o = DBg — &) (5.68)

5.4 PROBLEM MODELING AND BOUNDARY CONDITICNS

The finite element method is used for computing displacements and stresses for a
wide variety of problems. The physical dimensions. loading. and boundary condi-
tions are clearly defined in some problems, similar to what we discussed in Example
5.4, In other problems, thesz are not clear at the outset.

An example is the problem illustrated in Fig. 5.8a. A plate with such a lpading
van exist anywhere in space. Since we are interested in the deformation of the body,
the symmetry of the geometry and the symmetry of the loading can be used effec-
tively. Let x and v represent the axes of symmetry as shown in Fig. 5.85. The points
along the x axis move along x and are constrained in the y direction and points along
the ¥ axis are constrained along the x direction. Thie suggests that the part, which is
one-guarter of the full area. with the loading and boundary conditions as shown is
all that is needed to solve fur the deformation and stresses.

30 WPa

- B nm

[EL

i) Figure 5.8 Rectangular plaie.
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La|

Figure 5.9 COctagonal pipe.

A§ another example, consider an octagonal pipe under internal pressure,
shown in Fig. 5.92. By svmmetry, we observe that it iz sufficient to consider the
22.5% segment shown in Fig. 5.96. The boundary conditions require that points
along x and n are constrained normal to the two lines, respectivelv. Note that for 2
circular pipe under internal or external pressure, by symmetry, all points move radi-
ally. In this case, any radial segment may be considered. The boundary conditions
for points along the x axis in Fig. 5.9k are easily considered by using the penalty
approach discussed in Chapter 3. The boundary conditicns for pointe along the
mnclined direction n, which are considered perpendicular to v, are now treated in
detail. If node 7 with degrees of freedom (- and 0+ moves along n as seen in Fig.
5.10, and # is the angle of inclination of » with respect to x axis, we have

Oa_ysind — Oycosf = 0 (5.69)

This boundary cendition is seen to be & multipoint constraint, which is discussed in
Chapter 3. Using the penalty approach presented in Chapter 3, this amounts to add-
Ing a term to the poteniial enersy:

I1 = :Q"KQ ~ Q'F + 1C(Qx- sinf — QOncosh) (5.70)

where ' is a larze number,

inciined roller support.
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The squared term in Eq. 5.70 can be written in the form

Csirl  —Csinfcosf {Q,.,.
—(sinf cosé Coostf O

(5.71)

The terms Csin’6, —C sinfcos, and C cos*6 get added to the global stiffness ma-
trix. for every node on the incling, and the new stifiness matrix is used to solve for
the displacements. Note that the above modifications can also be directly obtained
from Eq. 3.82 by substiting So = 0, 1 = sind, and p = —cosb. The contribu-
tions to the banded stiffness matrix S are made in the locations (2f — 1, 1),
(2; — 1. 2), and (24, 1) by adding Csin*#, —Csinficosé. Creos*#, respectively.

1€ (Qa-i sin B — QucosB) = 5[0, Qy][

Some General Comments on Dividing
into Elements

When dividing an area into triangles, avoid large aspect ratios. Aspect ratio is de-
fined as the ratio of maximum 10 minimum characteristic dimensions. Observe that
the hest elements are those that approach an equilateral triangular configuration.
Such configurations are not usually possible. A good practice may be lo choose cor-
ner angles in the range of 307 to 120°, |
In problems where the stresses changs widely over an area, such as in notches {
and fillets, it is good practice to decrease the size of elements in that area to capture
the stress variations. The constant strain triangle (CST). in particular, gives constant
stresses on the element. This suggests that smaller elements will better represent the
distribution. Better estimales of maximum stress may be obtained even with coarser
meshes by plotting and extrapolating. For this purpose. the constant element StTesses
may be interpreted as the values at centroids of the triangle. A method for evaluating
nodal values from constant clement values is presented in the postprocessing section

of Chapter 12.
Coarse meshes are recommended for initial trials to check data and reason—

ableness of results. Errars may be fixed at this stage, before running larger numbers
of elements. Increasing the number of elements in those regions where stress varia-
tions are high should give better results. This is called convergence. One should get
a feel for convergence by successively increasing the number of elements in finite el

ement meshes.

Example 5.5 .
The solution of Example 5.4 using program FE2CST is presented below, using imm'ai;%,
tive mode of input. é

number of Elements =7 2
Fumber of Nodes =7 4

Number of Constrained DOF =7 5
Number of Componsnt Loads =7 1
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PROBLEMS

5.1 The nodal coordinates of the trangular element are shown in Fig, P51, AL the interior
paint P, the r-coordinate is 3.3 and ¥, = 0.5, Determine &, M. and the v-coordinate
al paant £,

145

24{5,:3)

L2

FIGLRE 25.°

5.2. Determine the Jacobion for the [z, ) = (£.7) transformation for the element shown il
Fig. P3.1. Aliso, find the area of the triangle.

1

L %

)
§=

I

FIGURE PE.2

53. Far point P located inside the frizngle shown n Fig, P33, the shape fl.:l.n.v.?liuns N and N
are (115 and 025, respectively, Dretermine the x- and y-enordinates of point P,

3(55)

244,25

111,1;

FIGURE P52



the v-roord: ; 5.4. lnEm:SJ,dmmwrm;m%mMmh_[ﬂm
Use Area = 05030 = xagks) for trianple 1-2-3.)

5.5, For the triangular element shown in Fipure P25, oblain 1he strain—displacetent relation

matrix B and d=tzrmine the sirams e, , e, and 3,

=00 gym =00k
a g2 =005 g, = 0007
T g = 0002 g, = 0005

cment shnnm

1.3
Mo g aned 5 bave the same s

FIGURE PE.S
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24, Figure PS. shows & 3-D region modeled with 12 CST elements.
{a} Determine the bandwidth NEW {also referrad (o as the “half-bandwidth™). d
(b 1 the multipoint comsteamt Oy = (g i imposed {1 and 18 are degree of freedom noms

¥
=k
3
P

hers coepesponding to z displacement of node 1 and ydisplacement of pode %,
respectively), what is the new valwe of NBW?

ik
1 Z 3 4 - :
, W L :
ir -
: F V
" # 9 10 |
l.
1L 1z 13 ik
FIGURE P5.6 ¥
§
27 Indicate all the mistakes m the following finite slement models with C3T elements: 2k
O
4> !
=
Lak T
I
l.
-
T
ki
1 T
- ! :
i ) |
-4
» -
L=
ELE ] .
s 1
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S&. Fora two-dimensional riangular clement, the stress—displacement matrix DB appearing

5.9,

v o = DBy is grven hy

2500 2200 1500 1200 —d4400 1000
DB = | 5500 4000 4100 2600 —1500 1200 M /mm?
L2000 2500 —4000 1800 own 4400 |

I the coslficient of lintar expansion is 10 107°/°C, the temperature rise of the ¢lement
15 100°C, and the volume of the element is 25 i, determing the ecuivalent temperature
load # for the element.

For the configuration shown in Fig. P5.9, determine the deflection at the point of load
application using & one-element model. If mesh of several triangular elements is used,
comnment on the stress values in the elements clage to the up.

100 N
= 50 W
20 mm
i = J{lmry
£ = T0000 WP

v =13

FIGLIRE P5.9

5.10. Determine the bandwidth for the two-dimensional tegion for the triangular element divi-

ston with the node numbering showr i Fig. P2.10. How do vou proceed to decrease the
bandwidth?

e e
=1 1

'\

"

|

£
/R HHK s
N .
AT e
[ 13

[ ]
# ! J o —

FIGURE P5.10
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5.11. Consider the fonr-element C51 model in fig, P3.11 subjected toa body force 7 = * Nim?
in the y direction. Assemble the global load vector ¥, for the medel.

1 i { ooTdinates, m

/ Mode 1= %

e { G- 2

o - o

2 £, 3 9 0

| 5 I

ot o i

U i" : & 15 0
ET) <] f

thiczness = Im

FIGURE P5.11

512 Assemble the load veetor B, 2t the three fiodes tm the inner boundary, which is subjectzd
bo & pressure p o= 0.9 MPa. [See Fig P512.)

% VA

r
) %
|.;/”f 1‘\5/ )
| 1

[ 13 mm |

o FIGURE P5.12 4

213, Consider the three-noded triangular element in Fig. P5.13. Express the integral for ares
moment of inertia [ = [ y*dA as

et
HAGURE P5.13
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T a

I'=y[RYy.
.
A where v, = [4 .1, 15]7 = a vector of v-eoordinates of the three nodes,and Risa 3 % 3
b malrix. (Hint Interpolate v using shape functions M.}
AR 514 Compute the integral [ = | N NN dA, where N arc the lincar shape functions for a
2 threenoded CST alement
s 5.15. Solve the plane stress problem in Fig, P5.15 using three different mesh divisions. Compare

your deformation and stress results with values obtained from clementary beam theory.

10 kM
8 |
¥
N
% E =T GPa
A D mm w= 033

§ Thickness = 10 mm
3
Y |

| Al mm 1

FIGURE P5.15

516, Forthe plate with 4 hole under plane stress (Fig. #5168 find the deformed shape of the hole
and determine the maximam siress distrisution along AF by using stresees in elements
adjacent to the ling. (Nete: The result in this problem is the same for any thickness. You
may uset = lin.)

E =30 1" psi

| =102
e
q-—l S | -
i | | /Elh‘} >
e == _._..l_.;__:'i‘"_]_ _____ e s
| e
i | |
L | | *
o b
HIOC psi i P : 2 pe1

FIGURE P3.16
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517, Modsla half of the disk with a hole ' Fie. P5.17) and find the ma:or and minor di
after epmpression, Also, plot the distribution of mazimom stress along AR ;

1000 1l

l F =30 100

w=103

.: all| e
//'/_ | \‘[hju:n:as =25,
- M
& a
_ )

FIGURE P5.17
5.18. Consider the multipoint constraint
30— 20, =01
dof % Wrile the oenaltr term

l _ = iy Y -
5C00; — 20, — 017 e 10, k| 7 | - (0,20
e ledn

iowing blanks to show how these additions arc made in the computer proaram (hat wses
a banded stiffness matrix $:

55,1 = 8{5.1) + S
Mg 5(9.1) = 5(9,1) + il
] Sis . J=ws Y e =
it F(5) = F(5) + i
| T -
i | A o
AL 5.19. Model the 22 5° segment of the octagonal pipe shown in Fig. P5.19. Show the deformed con-

figuraion of the sepment end the distribution of maximum in-plane shear stress. (Hine :
For all points along CE. tse stiffness modification suggested in Bg. 5.71. Also, maximuorm
in-plane shear stress = (o — o /2, where oy and o are the principal sresses. Assume

pling straom, )
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' S A o R
: // [ e
i e

FIGURE P5.15

520. Deermine the location and mngmtudc of maximum principal stress and maximum shear-
ing stress i the fillet shown in Fig, P5.20.

l—ﬂmfﬂ
4 il

12001 01K Thin -"f‘!_,. r=10m
II"!IE e E =30 210" psi
T " =03
4500 Mane streds
= 5 = Y- e
R 77 7% |2
2 in. |

FIGURE P5.20

521, The torque arm in Fie. P51 i3 an antomotive componsnt Dt‘-trmme fthe location and
magmlud: of maximum von Mises stress. Foras ‘oiven by =

T = Vo r, w3,

e
ﬁi
=
Bal
[}
| P
e
F
[rig
5T
/e
il
o]
£
=
=z

! r=10em
{AU dimensAcns in em) w200 % -lﬂl.- N.I"IT.;

= L

= FHELIRE P5.2T
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522 A large, flar surface of a steel hody 38 subjected to & line load of 100 [B/n. A ssuminp
strein, consider an enclosure as shown in Fg. P3.22 and determine the deformatis
aurface and stress distribmtion in the hody (Mate: Thoose small zlements close ti:
and assume that defection at 10w, away s neplisbie.)

100 I :
100 1Biin. g _,.ié._) i
104n. 1in. i S
|I E J % I"I :
al e | A1 _E=Nxu0tm
(i) '| AT 2o
II-\". E ; % |'I
! ézf/ﬁ:fﬂﬁz—zzxfy‘ e
\\_ e —-"j.sl:]-/_ll:l

SRR

Mladel
FIGURE P5.22 :
5.23. In Problem 522, the load is changed o & disteibuted oad ﬁD]b;inf ona J_,-’4-i:=.~w‘id¢_‘~_jm'5_5_"

region, as in Fig. P3.23. Model the sroblem as above with this Ioading and find daf?rm‘ﬂ_wf_.
tion of the surface and stress distribution in the body. [ Veoze: Assume that deflecriondt

10 m. away s nzgligible.) ?
o

2000 Jbvin? "‘

‘|

: £

{ i int— / 2

3

ol v |

FIGURE P5.23
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A A » 5-in. copper pigce Gl snugly into a short channel-shaped stecl plece al Tonm lem-
perature, as shown in Fig, P2.24. The assembly is subjected 1o a uniform temperature
increase of 80°T. Assuming that the properties atc constant within this change and that
the surfnces are bonded together, find the deformed shape and the stress distribution.

Copper
oc= 10 ¥ 107E I

; 5
E=18% 1Fpa |

u=I(25

i 7 T=8tF
W
] s ////,% | Stesl
1 A P ] g
1 o= 5N
J_,—m.f i E =30 = 10" ps
i | =3
; + 610 1
:': FIGLIRF P54

5.25. In the slotted ring shown in Fig. P5.25, two loads of magnitude P and load R are apphied
such that the 3-mm gap closes: Dietarmine the magnitude of # and show the deformed
shape of the part. (M Find the deflection of gap for, say. P = 100 and mulsiply the
dellections proporiionately.)

"\._ r'}
i /
- o
/ A T
; Hkx ¢ Ay
/ 1-.__ P )
/
i i il
/ s
i S e o TR ¥ \
_/’\". Y i
7 Y
", 3 I e
| ! :’"_.e._““.\ ﬂ‘ﬁ“:ﬂ
| P r"rlf.' s 2 e | i |
= - _——F T ot = - — - — - —Gap 2 mm Ir_
i k i a -
| ! s T ST |
| '.{‘A _."‘E_‘:"' [RETRE] l_-l' ]

Y Thickness = o mm

= FIGUIRE P5. 25"
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s 5.26. Atitanium piecs (A) i press-fitted mito a Htanium workpices (B) as shown in Fig. P5.2%
Determine the location { show un skeeteh | and magnimde of maximum von Miscs aress £
in both the parrs (from your CST output file). Then, prowidc contour plots of the von Mise;  §
stress in each pant. Data ars as follows: £ = 101 GPa, v = 0.34.

The guidelines are (a) use less than 100 elements in all, {b) mesh each pare inde

pendently, but without duplicating node or element numbers, () choose a value for I+ et

and then enforce multipoint eonstraints (M PCs) between the coincident nedes on thiy  §
mserface—the choice of L, will involve tral-and-check as nodes that want to sepa- |

rate shoild naot be forced rogether through the MPC, and (d) use SYTITELNY. ASslme L

no-ship interface, a fived base, and plane sirain.

103 |

1

e e
T
|
|
i
| k] 13 i
3 | - .
3 | | | & i
! ; I ]
- “.I 1 a
I
! :
| :
: =EE g
i '3 !
: 9
! L : | &
‘-\. I sk
e I
Biteil :
| FIGURE PS5.26 :
. S.27. Ancdee crack of length ain a rectangular plate is subjected to a tensile stress oy as shown

in Fig. '5.27. Using a half-symmetry model, complete the following:
{n) Determine the crack opening anple, # (8 = 0 before the load i applied].
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LA
O T O b bk
.
3 Crack T2
b2 iip
e
Crack g _.-}-""" . Ly
Surface——__- 0 = o
Plane sirzin (£ = 1 mm)
L = 400 mm
a =45 mm
b= 950 mm

(b} Pl the y strags @, versis x along the ling A0 Assuming that &, =

ey = 2500 MPs

b
E ]

T

FIGURE PS.ZT

N2

. e

regression to estimate K. Compare your result for mtinitely long plates, for which £

of = 12, vima is

used.

{e) Repeat part (b) for increasingly fine meshes near the erack tip,

. Use the grometry of the plalz [or the plane-stress prablem in P3,15. If the material of the
plate is graphite-epoxy resin with fibar orientation at an angle @ to the horizontal. dater-

mine tihe deformation

anc siress valuss o, o @00 e, for § = 0%, 30% 455 o0 and

90°_ Propertics ol graphite in enoxy resm are given ic Table 5.1 (Hni: The problem salu-
tion requirss modification of program 5T to incorporats the I matrix defined m Eg. 5.57%. )

- 'The plate with a hole in Problem 5.16 is made of pine wood. For @ = {°,30°, 43°, 60", and
U0 complete the following:

(2) Dretermine the deformet shape al the hole.

(h)-Find the stressdistribution along AF and hence. the stress concentration facior &, Flot

K, versns é.




