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Abstract: Super-convergent element formulations in local co-ordinates are obtained using
inverse strategies. In the inverse approach discretization errors of the element formulation are
minimized leading to super-convergent solutions. In the development of the inverse element
model, no shape functions are introduced and therefore the task of element transformation from
local to global co-ordinates system remains a challenge. In this paper, a procedure is proposed
to produce shape functions associated with the inverse element formulations via hierarchical
polynomials. A membrane element formulation is developed using inverse strategy as an exam-
ple and its associated shape functions are determined using hierarchical polynomials. Numerical
results indicate higher accuracy of the developed model in global co-ordinates compared to the
reported models in the literature for the same element.
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1 INTRODUCTION

In the finite-element method, many admissible shape
functions are considered for an element, each result-
ing in different formulation. The difference among
these models is in their accuracy and rate of con-
vergence. There are different approaches to improve
accuracy and rate of convergence in finite-element
models such as employing the p-element method
[14], differential equation finite-element method
[5-71, non-conforming element [8], etc. An alternative
is to adopt an inverse strategy and derive the opti-
mum element formulation in the local co-ordinate
system by minimization of the discretization errors in
a parametric element model. Discretization errors are
those associated with replacing the continuous media
by one composed of finite elements. The optimum
element formulation is referred to as a formulation
that leads to results with super-convergent proper-
ties. The inverse method in finite-element formulation
was used by Stavrinidis et al. [9], who determined
discretization errors of rod and beam elements as a
function of their characteristic lengths. As the element
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characteristic length approaches zero, the discretiza-
tion errors vanish. Stavrinidis et al. [9] obtained new
formulations for beam and rod elements by minimiz-
ingthe discretization errors. Later, Ahmadian et al. [10]
developed mass and stiffness matrices of a rectangular
plate element by minimizing the plate element model
discretization errors.Kim [11], Hansson [12], and more
recentlyFried ezal. [13, 14] obtained super-convergent
element models by eigenvalue convergence analysis
for rod, beam, and membrane elements in a local
co-ordinate.

These rod, beam, membrane, and bending plate
element models obtained using the inverse method
[9-14] present the best formulation in the local co-
ordinate system, but as no associated shape functions
are defined for the element models, they cannot be
transformed into global co-ordinates. This deficiency
prevents their use in practical problems where the
geometry of elements differs from local to global
co-ordinates.

This article introduces a method to determine the
shape functions associated with optimum element
formulation obtained using an inverse method. In
the proposed method, hierarchal polynomials are
employed to establish the shape functions of super-
convergent models. Using the established shape func-
tions, an inverse element formulation can be mapped
from local to global co-ordinates systems.
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The hierarchal polynomials have been used as
shape functions of transverse vibrating membrane
[15] and plate [16-18] elements. In the present
research work, the same polynomials are employed
to establish the shape functions associated with the
super-convergent element models. The coefficients
of adopted hierarchal polynomial series are assigned
such that the corresponding shape functions satisfy
the general requirements of compatibility, complete-
ness, and geometrical considerations and regenerate
the super-convergent element formulation.

The rest of the article runs as follows. In section
2, the physical requirements of an element model
are discussed. These physical requirements are used
to develop a parametric model for the element, and
the parameters are assigned by minimizing the model
discretization errors. The shape functions associated
with these inverse element models is reconstructed
using the hierarchal polynomial series as proposed
in section 3. The proposed strategy is demonstrated
using a simple membrane element with transverse
degrees of freedom in section 4. Admissible paramet-
ric stiffness matrices for rectangular membrane ele-
ments are developed in this section and the unknown
parameters are defined by minimizing the discretiza-
tion error in the element formulation. Subsequently,
in this section using hierarchal polynomials, shape
functions related to the super-convergent stiffness
(SCS) model of the membrane element in transverse
motion are produced. Section 5 investigates the con-
vergence rates of the obtained stiffness formulations
in local and global co-ordinate systems, followed by
the concluding remarks in section 6.

2 PHYSICAL REQUIREMENTS OF AN ELEMENT
MODEL

In general, an element model must meet certain
requirements. Consider an element with d degrees
of freedom and r rigid-body modes. The stiffness
matrix K is symmetric positive semi-definite and of
rank d and the rigid-body modes of the element, ¢g;,
i=1,2,...,r, formits null space

K- o5 =0, ®Or=I[¢r1,¢r2,---)¢r] 1

Also, mass matrix M is symmetric positive definite
and of rank d. If the rigid-body modes are defined on
the principal co-ordinates of the element then

& My = diag(m, m, m, L, Ly, L,) 2

where m is the element mass and Iy, I, and I, are the
moments of inertia. Moreover, if some strain modes
of the element such as constant strain modes ¢ =
[bc1> Pe2s - - - » Pen] are known, then further constraints

can be imposed on the stiffness matrix

K- ¢ = 2idpeis i=1,2,...,n 3)
where }; corresponds to the strain energy stored in the
element at the ith constant strain mode and is defined
using the known strain and stress, o;, distributions

1
A= 2 L gi0;dv @

The orthogonality relations for the set of rigid-body
modes and strain modes are

[0n ®cI'Kidn ocl= o 7|,

A = diag(rq, Aoy ..., Ap) (5)

When @ contains all the element constant strains
modes, the element formulation satisfies the patch test
requirements necessary for solution convergence.

Further requirements regarding the entries of stiff-
ness and mass matrices can be defined using geo-
metrical symmetries of the element. If the element
has some geometric symmetrical properties, then the
mass and stiffness models reflect these properties;
rotation of the element about its symmetry axes, e.g.
x axis, by 180°, does not change the mass and stiffness
matrices, that is

TLKT, =K, T MT,=M (6)

where T,, is a transformation matrix that rotates the
element model about axis x by 180°.

Itis possible to define a family of stiffness matrix for
an element that satisfies the requirements mentioned
in this section but depends upon one or more para-
meters. These parameters are identified by minimizing
the element model discretization errors [9-14].

3 SHAPE FUNCTIONS ASSOCIATED WITH THE
INVERSE MODELS

Hierarchal polynomials are employed to obtain shape
functions of element models developed using an
inverse approach. Hierarchal polynomial sets are
defined using integrated Legendre polynomials. Zhu
[19] initially presented the polynomial set and Bardell
[16,20] used the set to predict natural flexural vibra-
tions of rectangular plates and skew plates. Zhu [19]
introduced the polynomial set as

m/2

=S CDr@em-2n-2s- 1Y,

= 2nn! (m —2n)! ™

where ¢ is the element natural co-ordinate, m!! =
mm-2)... 2 or 1), 0" =1, (- =1, and m/2
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denotes the integer part of this product [17]. The
polynomial set (7) can be used as hierarchal shape
functions with C*~! continuity. Using Zhu'’s polynomi-
als and considering the particular value s = 2, Bardell
[16] proposed a hierarchal shape function of C! con-
tinuity. Hierarchal functions are constructed for two-
dimensional (2D) or 3D elements by multiplications of
two or three 1D functions defined in equations (7).

In general, the displacement field of an element is
defined as

N
W(C,ﬂ,§)=ZNi(Cﬂ7, SHw; 8)

i=1

where w(Z,n, ¢) is the displacement field, ¢, , and
¢ are the element natural co-ordinates, N;(¢,n, ¢) is
the ith shape function, w; is nodal displacement, and
N is the element number of DOF. The shape func-
tion N;(¢,n, ¢) is considered to be composed of two
sets; the first set, fi(¢, 7, ¢), adopted from the classical
FE model satisfying the element boundary conditions
and the second set is defined using equation (7)

Ny, 0, 6) =FilEsn, ) + Y Gm P60, ) ©

m=1

The unknown coefficients a,, and number of terms
in polynomial series, n, are assigned to produce known
stiffness and mass coefficients

1,101
kij:JoJ J I'(Ny(&,n,s)E,n, )

0.Jo
x I'(N; (€, n, ¢))dé dndg

1 01,1
my = L L L Nie, 1, )p (& )Ny, 1, <) dE dn de
10)

The operator I" defines the strain field of the ele-
ment, E(&, 7, ¢) is the elastic constant function and
p(&,7, ¢) specifies its mass density distribution. The
process of satisfying these identities and obtaining the
coefficients a,, is demonstrated in the next section for
amembrane element in lateral vibrations.

4 FOUR-NODE RECTANGULARTRANSVERSE
MEMBRANE ELEMENT

Transverse membrane elements are a type of ele-
ments that only have out-of-plane degrees of freedom.
These elements are used widely in the analysis of
acoustic fields. The transverse membrane element
reported in the literature is developed based on linear
displacement assumption [21]. The resultant stiff-
ness matrix presents a second-order convergence rate
for static deflection problems both in local and in
global systems. A more accurate transverse mem-
brane stiffness model is obtained in this section via an

=r
]

LY

Fig.1 Four-node square membrane element

inverse approach. Shape functions associated with the
developed stiffness model are then determined using
hierarchical polynomial sets.

4.1 Generic membrane element

A four-node rectangular membrane element with
dimensions of Ax and Ay, shown in Fig. 1, is consid-
ered. Each node has one degree of freedom and the
element stiffness matrix is a 4 x 4 symmetric positive
semidefinite matrix of the following general form

kl 1 k 12 k 13 k14
k22 k23 k24

ks ks 1
sym Kas

where « is a positive real scalar. A procedure similar to
the one reported in reference [10] for a plate element
is followed here to obtain the generic stiffness model
of the membrane element.

The element has two symmetry axes; when the ele-
ment is rotated 180° about one of these axes, the
stiffness matrix remains unchanged. The rotations are
equivalent to applying the transformations Ty, and T,
as

0100
T KT =K, T, KTy, =K, Tex = (1) g g (1’,
0010
0 0 0 -1
S -
-1 0 0 0

Using the physical symmetry requirements, the
number of unknown parameters of the stiffness matrix
reduces to four

kl 1 k12 k13 k14

_ ki ku ki
K=« kn ki (13)
sym ki

When the element is rotated through n/2 radians in
its own plane, the element aspect ratio g = Ax/Ay is
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reversed. This rotation is equivalent to the transforma-
tion of

, T K@) T =K(1/g) (14

(= ]
= O OO
(==l

It leads directly from equation (14) that k4 is
obtained by inverting the aspect ratio g to 1/q in k,;
this produces one more constraint on the parameters
of the element.

The element has one rigid-body mode

pr=[1111]" (15)

Introducing the rigid-body mode into equation (1),
one more parameter is defined as

K¢r =0 = ki3 = —(ki1 + k12 + kia) (16)

This brings the total number of un-attributed
parameters of the parametric stiffness matrix to three.
The element has two constant strain modes

b= |l 1l 1"
a7l 222 2|’

These constant strain modes produce the following
strain energies in the element

=L, i,=pg 18)
q

where P is the surface tension at the edges of ele-

ment. Employing the constant strain relations defined

in equation (3), one finds the following requirements

on the element entries

p
ki = P kn 19)
kg

p
kiz = ﬂq — ka1,
There remains only one unknown parameter in
the stiffness matrix determined by minimizing the
discretization errors in the element formulations.

4.2 Discretization error analysis

The formulation obtained from the parametric stiff-
ness matrix is compared with the governing equation
of the transverse membrane, allowing identification
of the un-attributed parameters by minimizing the
discretization errors.

The membrane elements with an area AA = Ax %
Ay are assembled to create finite-element model of
arectangular membrane with free edges, as shown in

Fig.2 Assembled square membrane elements

Fig. 2.Inthe assembled model, the discrete equation of
motion corresponding to a typical internal node (i, j) is

K[O{, ,3’ o, ,3’ 4kll ,3’ o, ,3’ O5] di,j ’
i,j+1
p p
a=kn—-—, B=-—-2kn (20)
K K

This discrete governing equation is then converted
to a continuous series form by defining the deforma-
tions in the neighbouring nodes using Taylor series
expansions of deformations in node (i, j)

=1 3 "
di:!:l,j:!:l = d,'J + Z ﬁ (:I:Axa + Ay@) d,',j 21)
n=1""

This process transforms the discrete finite-element
equations into a partial differential equation in series
form having the terms of an increasing order of small-
ness O(Ax?", Ay*"), n = 1,2,.... The continuous form
can be written as

92 82
aap (P00 Pw
ax? = ay?

+§:AA"+1[ P 82n< 1 Qw

= g n \q(n+ HE@n+ ! 9x?
1 1 q «kin\ 2w
to (a1 %) )
ipp (L Pw
a3y \g(n+1H@2n+1)! 3y

1 1 q Kku 8211/ :|
+ ==+ —
61 \4q ' 4 2P ) ox?

The resultant continuous differential equations
must produce the left-hand side of transverse mem-
brane motion governing the equation

2w 4 2w
ax?  9y?

(22)

) =—-F(x,y) (23)

where F(x,y) is the distributed lateral external force.
The characteristic area AA is an independent variable;
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therefore, to compare the obtained series equation
with the exact equation of motion one may start
from the lowest-order terms and assign the stiffness
parameters to minimize the difference between the
two models. The lowest-order term in equation (22)
is of order AA and is equal to the left-hand side of
equation of motion (23). Next, the terms of order AA?
are considered

92 1 w 1 q Kku Pw
2 - - " il b At L Wit
AAP [axz (12q ax? + <4q + 4 ZP) ayz)

2 /q Pw 1 g «kn\ 2w
T elmie Tl ta ™ F)
ay? \12 a3y 4q 4 2P ) ox

(24)

Equation (24) represents the left-hand side of the
equation of motion when the following three require-
ments are met

k=P (25)
1 1

(— +q- Zku) = 5} (26)

(— +q- 2ku) =1 @7)
q 3

Obviously, the requirements of equations (26) and
(27) cannot be satisfied simultaneously when g # 1.
Therefore, one may look for a least square solution by
assigning

5 1
ki = I <q + ‘_l) (28)

This results in the SCS matrix of the transverse
membrane element as

5(@*+1) 1-5¢4* —(¢*+1) q¢*-5
_ P 5@ +1) ¢*-5 —(@+1
T 12q 5@*+1) 1-5¢* |
sym 5(*+1)
AX

When the aspect ratio of elements are set to unity
(g = 1), the residues of equations (26) and (27) are
zero and the discretization errors are of sixth order (i.e.
O(Ax%)). The element developed using linear shape
functions with k;; = 1/3[q + (1/9)]1 produces errors of
O(AxY).

The stiffness matrix of equation (29) is developed in
the local co-ordinates. It is desired to obtain the asso-
ciate shape functions for the new optimum stiffness
matrix to be able to transform it to global co-ordinates.

4.3 Shape functions of the SCS model

The displacement field of the membrane element is
defined as

w(&,n) = Ni(&,nwy + No(&,nw,
+ N3(&, myws + Ny(&, n)wy (30)

where ¢ and 7 are natural co-ordinates of the element
¢ =x/dx,n = y/dy, as shown in Fig. 1. The element
has one rigid-body mode of ¢r; =[1,1, 1, 1], which
enforces the following requirement on the shape
functions of the membrane element

Ni(&,m) + No(,m) + N34, m) + No(§,m)y =1 (E2Y)

Requirement (31) relates N,(z,n) to other shape
functions expressed as a linear combination of the
hierarchal functions. Following Bardell [16], the mem-
brane element shape functions are formed from two
sets of polynomials

N
N =fED + Y Guafia@n)

i=1

N
No(&,m) =fiE, 1= 1) + ) Aua fua(C, 1 = 1)

i=1

N
Ny(&,m) =l —&1=m+ Y @uafie(l—¢,1—1)
i=1 (32)

The first part is adopted from the classical mem-
brane element model shape functions to satisfy the
element boundary conditions. The complementary
parts of shape functions are defined using hierar-
chal functions. These 2D polynomial functions are
constructed by multiplications of two 1D polynomial
functions, that is

Fr&m) = f1Of () (33)

The base polynomial satisfying membrane element
boundary conditions is

Ay =1-¢ (34)

and the complementary parts are defined using
equation (7) as

[ =P ()

—1)/2
_ (rX):/ (=" @r-2n-— 5)”Cr—2n_1

2%n! (r—2n-1)!

, I>2
n=0

(35)

Shape functions of the membrane element have C°
continuity; thus, s in p5,(¢) is set to unity. Table 1
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Table 1 Hierarchal polynomials
equation (31)

obtained using

fe) =262 -2 g 02

0.2

fae) =463 — 662 +2¢ g o/\/
0.2
[1}

fo(&) = 104 — 2083 + 1262 — 2¢

[
| }

demonstrates these functions (2 < r < 5), and it can
be seen that the polynomial sets have zero dis-
placements at element nodes, while their slopes are
non-zero at these locations.

The element has two symmetry axes and an applied
displacement at one node whereas other nodes are
fixed, apart from a constant, and produces an anti-
symmetric deformation w(z,n) with respect to the
element’s natural co-ordinates. The selected form for
the shape functions in equations (32) to (35) reflects
this fact. Changing the unit displacement practice
from one node to the neighbouring one, the deforma-
tion field of the element is rotated by n/2 about axes
normal to the element plane. This property is also rep-
resented in the functions introduced in equations (32)
to (35).There is one more requirement that must be
satisfied by series defined in equation (32) leading
to the specifications of series coefficients a;. These
functions must produce the entries of membrane SCS
defined in equation (29), that is

e 1 3N; 3N
ko= oo (5 5 +

The requirement defined in equation (36) produces
one independent equation to be satisfied. The hierar-
chal polynomials of equation (32) must contain only
odd functions to produce the required anti-symmetric
deflection; therefore, a3 is set to zero and a, is obtained
by satisfying equation (36) as

1 3N; aN;
ﬁa—na—n> dé o

(36)

as = gm (37

The obtained hierarchal shape function N;(z,n) of
the rectangular membrane SCS is shown in Fig. 3.
The other three shape functions are obtained by rota-
tion of Ni(¢, n) about the axis normal to the element
plane. The numerical performance of the transverse
membrane element is evaluated in the global co-
ordinates using these new shape functions and its

10

Fig.3 Shape function Nj (g, ;) of transverse membrane
element

convergence rate in estimating the membrane deflec-
tion are demonstrated in the next section.

5 NUMERICAL STUDY

In the following numerical examples, errors in esti-
mation of mid-node deflection due to the uniform
pressure of clamped square and sectorial membranes
are investigated. Exact analytical solutions of square
and sectorial membrane deformations under uniform
pressure are available. These solutions are compared
with the numerical finite-element results to estimate
the discretization errors. The results are obtained in
non-dimensional form and are independent of the size
of membranes. This allows comparing discretization
errors of the classical and inverse membrane models.

The clamped square membrane subjected to uni-
formly distributed load is modelled using two different
formulations, namely the stiffness model obtained
from bi-linear shape functions and the stiffness matrix
developed using the inverse approach. Figure 4 shows
error in the estimation of the static deflection of the
membrane’s centre node and the convergence rate of
these models when the number of elements (q = 1)
are increased. As shown in Fig. 4, the convergence
rate in the bi-linear model is of second order whereas
the order of error in the model formed using the pro-
posed stiffness matrix is of fourth order. This example
demonstrates the superiority of the obtained model
using the inverse approach over the existing one.

In a second example, the deformation of a clamped
sectorial membrane with radius ratio of 2 and centre
angle of 90°, as shown in Fig. 5, subjected to uniformly
distributed pressure is considered. The membrane is
modelled using the stiffness models obtained from
bi-linear shape functions and the inverse approach.
Then the elements are transformed from the local
rectangular shape to the global quadrilateral form, as
shown in Fig. 6, to model the sectorial membrane.
Figure 7 shows the error in estimation of sectorial
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Error (%)

-
(= |

-
ﬂ.
(5

10
Humber of elements along one sde

Fig.4 Errors in estimating mid-node deflection of a
square membrane (proposed model - circles and
bi-linear shape function — stars)

X

Fig.5 Open sectorial membrane, dimension (R/r = 2)

(m)
M
3
2 3 ] 2
1 4 L 1 4

Fig.6 Two-dimensional ‘mapping’ of square element

membrane centre node static deflection. The centre
node is designated as point A in Fig. 5 and has co-
ordinates of r = 0.75, 6 = 45°. The convergence rates
of both classical and inverse models are investigated
by increasing the mesh numbers. In this numerical
study, the number of elements in radial and tangential

10’
Noember of dements along one sde

Fig.7 Errors in estimating mid-node deflection of a
sector membrane (proposed model - circles and
bi-linear shape function — stars)

directions is kept the same whereas the number of
meshes along each side is increased from 4 to 12. As
shown in Fig. 7, the inverse model creates more accu-
rate results. The convergence rate in both models is of
second order due to the fact that the aspect ratio of
the element is not unity; therefore, the discretization
errors in both models are of fourth order.

The order of the element model obtained from the
proposed method of the present article is equal to the
one obtained from bi-linear shape functions while the
accuracy of the inverse model is superior to the bi-
linear model. This leads to equal computational efforts
to solve a problem using either element models, but
the proposed model creates more accurate results at
no added computational costs.

6 CONCLUSION

A procedure is developed in this article to generate the
shape functions associated with the super-convergent
element formulations. The shape functions are formed
using the classical shape functions of the element, sat-
isfying its boundary conditions, and hierarchal poly-
nomial sets. The coefficients of the polynomials are
assigned such that the optimum formulation for the
element in terms ofits accuracy is achieved in local co-
ordinates. The proposed procedure is demonstrated
for a transverse membrane element. First, the super-
convergent element formulation is obtained using an
inverse approach. Next, the element shape functions
are obtained using hierarchal polynomial sets and
its displacement field is transformed to the global
co-ordinates using these shape functions. Numeri-
cal examples employed to demonstrate more accurate
results are obtained using the new formulation at no
added computational costs.
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