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This paper addresses the problem of selecting a side constraint and determining the
regularisation parameter in model updating. The weight to be attached to the constraint
is determined by the regularisation parameter. Methods based on singular value
decomposition, cross-validation, and L-curves are considered, and results obtained by
applying these methods to a numerical example provide the basis for a comparative study.
It is found that the method of cross-validation can be used reliably to truncate the small
generalised singular values which contain the measurement noise. The L-curves approach
is similarly robust in locating the regularisation parameter, and this is demonstrated in a
physical experiment. It is shown that careful selection of the side constraint can lead to
updated parameters with physical understanding.
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1. INTRODUCTION

Noise contamination in test data is a problem central to finite element model updating
[1, 2]. The purpose of this article is to demonstrate how regularisation methods can be used
for the treatment of ill-conditioned, noisy systems of equations such as those that arise
in the correction of finite element models by using vibration measurements.

The regularisation problem centres around the equation,

Au= b, (1)

where A $ Rn×m, b $ Rn×1, u $ Rm×1, nqm, and the parameters u are required. Initially,
consider the case when b is contaminated with additive random noise, o, having zero mean
and with mutually independent entries (the case of noise being present in the matrix A will
be discussed later). It is well known that the least-squares solution, uLS , is unique and
unbiased provided that rank(A)=m. When A is close to being rank deficient then a small
o may lead to a large deviation in u from its exact value and the solution is said to be
unstable and equation (1) is ill-conditioned.
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A different problem occurs when mq n so that equation (1) is undetermined and there
are an infinite number of solutions. The Moore–Penrose pseudo-inverse in the form,

uLS =AT(AAT)−1b, (2)

provides the solution of minimum norm, as does singular value decomposition (SVD). For
the case when rank(A)= rQmin {m, n}, Golub and Van-Loan [3] showed that the SVD
will result again in the minimum norm solution. This is a form of regularisation which
has been applied widely in the model updating community [4–6]. Rothwell and Drachman
[7] developed a method that resulted in a diagonal matrix with terms (si + l2/si ), where
the conditioning is controlled by adjusting l, and si denotes the ith singular value.

Natke [8, 9] advocated the application of regularisation techniques in model updating
and Fregolent et al. [10] considered a variety of methods for determining the regularisation
parameter, l, in the equation-error problem. Link [11] weighted the parameters by a
diagonal matrix related to the reciprocals of the sensitivity terms, which had the effect of
constraining those parameters with small sensitivities. Prells [12] used in a weighting matrix
based on data sensitivities calculated from a Monte-Carlo-like method. The present study
considers the ill-conditioned system of n equations in m parameters (nem). An important
objective is to provide a physical interpretation of regularised results, which is
demonstrated in numerical and physical examples.

2. STATEMENT OF THE PROBLEM

The classical Tikhonov/Phillips regularisation problem can be described as follows:
Determine the stable solution, u, of equation (1) which approaches the true solution uEX ,

AuEX = b− o, (3)

as the noise (present in b) becomes vanishingly small,

u:uEX , o:0. (4, 5)

In Tikhonov’s method [13] the approximate solution, u(l), is defined as the unique
minimiser of the quadratic cost function,

>Au− b>2
2 + l>Cu− d>2

2, (6)

where C $ Rp×m, pEm, is chosen so that

rank $AC%=m, (7)

which is an expression of Morozov’s complementation condition [14], and lq 0 is the
regularisation parameter (some authors use l2 in place of l). The basic idea is to minimise
the cost (6) by searching for a solution u(l) which at the same time produces a small
residual >Au(l)− b>2

2 and a moderate value of the side constraint >Cu(l)− d>2
2. The way

in which these two terms are balanced depends on the size of the regularisation parameter
l. If l is too small then the problem will be too close to the original ill-posed problem,
but if l is too large then the problem solved will have little connection with the original
problem.

The matrix C is typically either the identity matrix Im or a discrete approximation to
a derivative operator [15]. The latter has been used in spline fitting [16] to ensure
smoothness of the reconstructed data. The correct choice of C is vital to obtaining
meaningful parameters u. Varah [17] showed that a wrong choice of C can lead to
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completely erroneous results. In model updating, additional information should be
introduced by means of the side constraint, not present in equation (1).

In the following, the various regularisation methods (truncated SVD, generalised SVD,
cross-validation, and L-curves) are described and applied to a simulated problem.

3. TRUNCATED SINGULAR VALUE DECOMPOSITION

The singular value decomposition of A [3] may be written in the form,

A=USVT, (8)

where U $ Rn× n and V $ Rm×m are orthogonal matrices and

S= diag(s1, s2, . . . , sm ) $ Rn×m (9)

with

s1 e s2 e · · ·e sm q 0. (10)

In ill-posed problems, two commonly occurring characteristics of the singular values have
been observed [18]:
(1) The singular values si , i=1, 2, . . . , m decay steadily to zero with no particular gap
in the spectrum.
(2) The left and right singular vectors ui (U=[u1, u2, . . . , un ]) and ni (V=[n1, n2, . . . , nm ])
tend to have more sign changes in their elements as the index i increases.

Thus, when A is close to being rank deficient (with near-zero singular values) its
null-space is spanned by vectors with many sign changes. From manipulation of the SVD,

Au= s
m

i=1

si ui (nT
i u), (11)

which shows that the high frequency components have only a small contribution to Au

because of the small si s. However, the inverse problem of computing u from,

u= s
m

i=1

ni 0 fi

si1, (12)

fi = uT
i b, (13)

shows that the noise effects will be amplified when si Q fi .
Equation (12) provides a clue about when to truncate the singular values. If A does not

contain noise then the singular values decay to zero whereas fi decays to the noise level.
The point i= j, where the two curves of si and fi begin a sustained deviation with increasing
i, can be used as the truncation index when the noise level is unknown. This is the discrete
Picard condition [17, 19] which can be interpreted as,

min
u

>u>2 subject to: >Au− b>2 Q sj (14)

It should be noted that the truncated SVD is incapable of taking account of the side
constraint, Cu= d. This leads us to consider the generalised SVD.
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In the generalised SVD [18], one considers the system of equations,

$AC%u=0bd1, (15)

and obtains the decompositions of A and C in the form,

A=U$I S%X−1, (16)

C=V[0 M]X−1, (17)

where X $ Rm×m is non-singular, and the columns of U $ Rn×m, V $ Rp× p are orthogonal
(but not related to the matrices U and V in Section 3) and neme p. The matrices S and
M are given by,

S= diag(s1, s2, . . . , sp ), (18)

1e s1, es2 e · · ·e sp e 0, (19)

M= diag(m1, m2, . . . , mp ), (20)

0E m1 E m2 E · · ·E mp E 1, (21)

and the terms si , mi , i=1, . . . , p, are normalised so that,

s2
i + m2

i =1. (22)

The generalised singular values of $AC% are then given by,

gi =
si

mi
, i=1, . . . , p, (23)

in decreasing order. The columns of X relating to the largest generalised singular values
span the range of A and the null-space of C. The reverse is true of the smallest generalised
singular values. Morozov’s complementation condition [14] states that the range of C
should contain the null-space of A. Therefore, the aim is to truncate the singular values
at i= j so that >Au− b>2 E sj and >Cu− d>2 is a minimum. This can be achieved by
applying Picard’s condition to truncate the singular values when (uT

i b /si )i= j takes a large
value.

3.2. — 

The numerical example is the six-degree-of-freedom mass–spring system proposed by
Kabe [20] and shown in Fig. 1. It consists of an arrangement of parallel springs so that
the effects of small stiffness changes in many of the springs tend to be similar.

The parameters to be updated are the 10 stiffnesses and six masses, and the measured
data consists of the first three natural frequencies and mode shapes. The latter are the
normalised displacements at the six masses to which are added independent sequences of
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uniformly distributed random numbers. In addition to the three-eigenvalue equations the
mass–orthogonality conditions are enforced,

FTMF= I,

FTKF=L,

where L and F are the spectral and modal matrices respectively, and M and K are the
structural mass and stiffness matrices. Also, the mass terms are constrained by the total
mass condition,

fT
R MfR =mtotal ,

where fR is the rigid body mode.
When the eigenvalue equations are rearranged [21] so that

u=(k1, k2, . . . , k10, m1, m2, . . . , m6)T it is clear that there are 31 equations in 16
parameters (3×6 equations for each eigenvector term, 2×6 symmetric orthogonality
equations; and 1 total mass equation) and the terms in A and b contain noisy data.

Side constraints are applied to set,

k1 = k5 = k6 = k9 = k10,

k2 = k3,

0.1 (k7 − k8)=0,

m1 =m4,

m3 =m5 =m6.

The second and third constraint equations do not accurately represent the model and this
is reflected in the third equation by the weight of 0.1.

Figures 2 and 3 show typical results of singular value and generalised singular value
analysis for a noise level of 5% of the eigenvector terms (signal-to-noise ratio=20). The
discrete points represent the singular values, si , and the ratio (uT

i b/si )—the discrete Picard

Figure 1. Numerical spring–mass model.
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Figure 2. Singular values.

condition—is given by the sequence of points connected by straight lines. It is clear that
the Picard condition fails to give a clear indication of where the singular values should
be truncated.

Although the generalised SVD includes the side constraint which would be beneficial
if a truncation index could be located, the Picard condition fails to find it because the level
of noise in A and b is the same. This means that the si and uT

i b decay together to the same
noise level as i increases.

Figure 3. Generalised singular values.
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4. CROSS-VALIDATION

The idea of cross-validation is to maximise the predictability of the model by choice of
the regularisation parameter l. A predictability test can be arranged by omitting one data
point, bk , k=1, . . . , n, at a time and determining an estimate, ku(l), using the other data
points. Then for each of the estimates, predict the missing data and find the value of l

that on average predicts the bk , k=1, . . . , n, best. This is the method of cross-validation
[22]. The procedure is explained in the following steps.
(1) Find the estimate ku(l) which minimises,

s
n

i=1
i$ k
0bi − s

m

j=1

aij uj 1
2

+ l>Cu− d>2
2. (24)

(2) Predict the missing data point,

b	 k (l)= s
m

j=1

akj kuj (l). (25)

(3) Choose the value of l which minimises the cross-validation function,

V0 =
1
n

s
n

k=1

(bk − b	 k (l))2. (26)

From Appendix A, equation (26) may be re-written in the form,

V0 =
1
n

>Q(l) (Au(l)− b)>2
2, (27)

where

Q(l)= diag0 1
1− rii (l)1, i=1, . . . , n, (28)

and rii is the iith element of the influence matrix,

R(l)=A(ATA+ lCTC)−1AT. (29)

Similar expressions are derived by Craven and Wahba [23] for the case of a side constraint
having the standard form >u(l)>2

2. The transformation of the cost (6) to the standard form
is considered by Hanke and Hansen [24], and Hansen [18] gives Matlab routines that utilise
a standard-form transformation.

4.1.  -

Golub et al. [25] showed that the ‘ordinary’ cross-validation method led to solutions
u(l) that were rotationally dependent. They replaced rii (l) in equation (28) with 1/n
trace(R(l)) to give the generalised cross-validation (GCV) function,

V(l)=

1
n

>Au(l)− b)>2
2

01n trace (I−R(l))1
2
, (30)
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which may be viewed as a weighted version of V0 (l). Golub et al. [25] showed that
equation (30) could be derived from the circulant matrix which is a particular form of D
that is independent of rotation.

4.2.       

The influence matrix R, given from equation (29), can be written in the form,

R=AA+, (31)

where A+ denotes the generalised pseudo-inverse. In equation (28), A+ is a function of the
regularisation parameter l. However, the regularisation can be achieved in another way
by omitting singular values. This leads us to re-write A+ from equation (16) in the form,

A+ =X&Im− p

S−1
j

0p− j'UT (32)

and,

A=U&Im− p

Sj

Sp− j'X−1, (33)

where

Sj = diag(s1, s2, . . . , sj ), (34)

Sp− j = diag(sj+1, sj+2, . . . , sp ), (35)

and j is the truncation index. By combining equations (31)–(33) and since Sj S
−1
j = Ij it

is seen that,

trace(R)= trace(Im− p+ j )=m− p+ j. (36)

Thus,

1
n

trace(In −R)=1−
(m− p+ j)

n
, (37)

and the GVC function [equation (30)] can be written as,

V( j)=
n>(Au( j)− b>2

2

(n−m+ p− j)2. (38)

A function similar to this (but not identical) is given by Vogel [26]. The truncation index,
j, is chosen so that V( j) is a minimum.

4.3. — 

Typical results obtained from the numerical experiment described in Section 3.2 are
presented in Figs 4 and 5. The numerically produced data is identical to that described
previously, with a signal-to-noise ratio of 20 as before.

The GCV function given in equation (30) is found to be sensitive to the noise and in
many instances will not produce a minimum. Figure 4 illustrates one occasion when a
minimum of V(l) was located. A problem occurs with the GCV method when the matrix
A contains measured data. In the predictability test the part of the measurement noise in
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Figure 4. GCV function V(l).

A that is correlated with the noise in b will be regarded as the true response of the structure
and only the uncorrelated part of the noise will be filtered out. In other words, the l

obtained from the GCV procedure will be smaller than the one which minimises the effect
of the noise.

Figure 5 shows the GCV function V( j) which is determined by truncating the
generalised singular values as in equation (38). The numerical results show that V( j)
consistently produces a minimum at j=6 and therefore seems to be more robust than V(l)
in determining the regularisation parameter. Local minima (such as the one at j=2) are
noise dependent and in any case much less distinct than at j=6.

5. L-CURVES

One way of obtaining a regularisation parameter in the presence of correlated noise is
to define an upper bound for the side constraint and minimise the residue,

min
u

>Au− b>2 subject to: >Cu− d>2 E g, (39)

Figure 5. GCV function V(j).
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or alternatively to set a limit for the residue and minimise the deviation from the side
constraint,

min
u

>Cu− d>2 subject to: >Au− b>2 E o. (40)

Ahmadian et al. [27] used an equation-error method to identify the parameters of a beam
from measured data by using the approach of equation (39). They used the side constraint
to limit the amount of change in the initial model and assigned l based on their judgement
of allowable changes in the parameters. Of course, the success of the method is highly
dependent on the physical insight of the analyst.

Another approach is to plot the norm of the side constraint >Cu(l)− d>2 against the
residue >Au(l)− b>2 obtained by minimising the cost (6) for different values of l.
Hansen [28] showed that the norm of the side constraint is a monotonically decreasing
function of the norm of the residue, and any point (o, g) on the curve is a solution to
the two constrained least-squares problems (39) and (40). He pointed out that for a
reasonable signal-to-noise ratio and satisfaction of the Picard condition the curve is
approximately vertical for lQ lopt , and soon becomes a horizontal line when lq lopt ,
with a corner near the optimal regularisation parameter lopt . The curve is called the
L-curve because of this behaviour, which can be explained as follows. When l varies
within the order of the smallest singular values of A, the norm >Au(l)− b>2 does not
change significantly. However, according to Morozov’s condition, the vectors
(corresponding to the small singular values) occupy the range of C, so that a large
change is produced in >Cu(l)− d>2 which gives the vertical part of the curve. Since
the small singular values contain the measurement noise it is clear that the vertical line
extends further from the corner as l becomes smaller. On the other hand, when l

increases beyond lopt the norm >Au(l)− b>2 also tends to increase because the cost (6)
then favours satisfaction of the side constraint. When the side constraint is closely
satisfied then no perceptible change in >Cu(l)− d>2 is expected, and the horizontal part
of the curve is created. Hansen and O’Leary [29] specify lopt as the regularisation
parameter with maximum curvature at the corner of the log–log plot of the L-curve.
This point represents a balance between confidence in the measurements and the
analyst’s intuition.

5.1. -— 

A typical L-curve for the numerical problem described previously and shown in Fig. 1
is given in Fig. 6. The curve displays a clear corner at l1 800 when the signal-to-noise
ratio is 20.

Identified stiffness and mass parameters are given in Table 1 by using the
regularisation parameter l (derived from L-curves) and the GSVD truncation index j
(from GCV). These results are shown together with parameters obtained from an
unregulated (no side constraint) least-squares solution. As expected, the unregulated
least-squares estimate fails to identify an acceptable model. Negative mass and stiffness
terms are found and estimation errors as high as 120% are obtained. The parameters
obtained by GSVD and by the constrained least-square approach both seem to be
acceptable. It is not really possible from one set of typical results to say whether the
use of L-curves to determine l, or GCV to determine j, is to be preferred. An example
of regularised model updating by using data from a physical experiment is given in the
following section.
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Figure 6. L-curve.

6. REGULARISED MODEL UPDATING FROM A PHYSICAL EXPERIMENT

The test structure was the frame shown in Fig. 7. It contains four L-shaped welded joints
and two welded T joints which are difficult to model. The frame is made from 25.4 mm
(1 inch) square aluminium tubing with 2.38 mm (3/32 inch) wall thickness. Modal analysis
was performed using standard hammer-impact procedures to obtain the first five
out-of-plane strain modes (natural frequencies and mode shapes measured at 13 points)
from the freely suspended frame.

A finite element model consisting of 28-beam/bar elements (six-degrees-of-freedom per
node) was constructed, the beam-part of each element being an Euler–Bernoulli beam

T 1

Table of estimated parameters

Signal-to-noise Signal-to-noise
Parameter ratio=100 ratio=20

ZXXXXXXXCXXXXXXXV ZXXXXXXXCXXXXXXXV
Exact GSVD ( j=7) CLS (l=700) LS GSVD ( j=6) CLS (l=800) LS

k1 1000 957 966 1041 1348 561 954
k2 1250 1250 1257 1266 1214 1309 1243
k3 1500 1405 1533 1518 1008 1338 1502
k4 10000 10098 9975 10003 9843 10358 9844
k5 1000 984 1002 1006 1047 873 1160
k6 1000 937 1024 1008 1155 711 1011
k7 5000 5276 4610 9914 4062 6949 −1024
k8 7000 6953 7896 −414 5422 12639 21382
k9 1000 1050 932 2035 940 1197 −83
k10 1000 969 1091 −63 833 1201 2323
m1 1.0 1.005 0.992 1.0 1.0 1.033 0.97
m2 0.2 0.2 0.201 0.2 0.2 0.194 0.21
m3 0.1 0.093 0.102 0.1 0.101 0.077 0.1
m4 1.0 1.0 1.0 0.99 1.026 0.939 0.95
m5 0.1 0.107 0.094 0.2 0.09 0.118 −0.02
m6 0.1 0.098 0.111 −0.01 0.084 0.14 0.28

GSVD, Generalised singular value decomposition; CLS, least squares with side constraint; LS, least squares
without side constraint.



3 4 5 6 7

8

9101112

1
2 13

y

x

z

584 mm
279 m

m

25
.4

 m
m

(a)

(b)

.   .58

Figure 7. Frame structure.

with Hermitian shape functions. The physical properties used in the finite element
model were:

Modulus of elasticity, E=71 GPa;
Shear modulus, G=26.6 GPa;
Mass density, r=2710 kg/m3;
Area, A=2.19×10−4 m2;
Principal inertia, I=1.3×10−8 m4;
Torsional constant, J=3.91×10−8 m4.

The joints, which were inaccurate in the finite element model, are shown in Fig. 8.
Mis-modelling of the joints then represented one of the major sources of discrepancy
between the finite element and test results, which are given in Table 2 and Fig. 9.

6.1.  

The frame model was updated by using the generic element approach [30] which is based
on the idea of adjusting the eigenvalues and mode shapes of individual elements (or groups
of elements). The present case sought to correct the stiffness of the finite element model
and the mass matrix was assumed to be correct. It was chosen to update the element

Figure 8. (a) T and (b) L joint FE models.
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T 2

Numerical and measured natural frequencies, frame example

Frequency (Hz)
ZXXXXXXCXXXXXXV

Mode F.E Measured Error (%)

1 255.8 226.8 12.8
2 277.5 275.2 0.9
3 581.3 537.4 8.3
4 911.3 861.5 6.0
5 1049.4 974.8 8.0

stiffnesses by adjusting the eigenvalues and eigenvectors of the element stiffness matrices.
Each beam/bar element has order six and rank three and therefore decomposition of the
element stiffness gives,

Ke =V0 RLRTVT
0 (41)

or

Ke =V0& k11

sym

k12

k22

k13

k23

k33'VT
0 (42)

where V0 contains the three strain-eigenvectors of the original finite element
model, L is the diagonal matrix of stiffness eigenvalues, R is the 3×3 rotation matrix given
from,

V=V0 R (43)

Figure 9. Measured (——) and finite element (– · – ·) frequency responses.
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Figure 10. L-curve—frame example.

and V is the matrix of corrected element stiffness eigenvectors. The terms k11, . . . , k33 are
open for updating. For the beam/bar element it can be shown that,

VT
0 = & 0

2b

0

a

b

0

0
0
a

0
−2b

0

−a

b

0

0
0

−a' (44)

where a=z2/2 and b=z10/10. Thus, the first and third modes are anti-symmetric and
the second mode is symmetric. Thus, for any symmetric beam/bar element k12 and k23 are
zero. Then for each of the 14-joint elements, there are six correction parameters, and four
correction parameters at each of the connecting elements, making 140 parameters in total
to be updated. These parameters are determined from the 70 equations arising from the
five measured modes and a further 340 equations obtained from expanding the mode
shapes using the finite element model [31]. To constrain the solution it is assumed that
similar elements are given by a similar model. Based on their similarities, the elements can
be grouped into three sets: T joint elements, L joint elements, and connecting elements.
This grouping of the elements constitutes the side constraint.

6.3. 

The L-curve for the frame problem has a clear corner as shown in Fig. 10. The
reconstructed frequencies are given in Table 3, together with results that had been
produced by using a minimum-norm constraint. Both methods give reconstructed
frequencies that are in excellent agreement with the measured data. However, a stricter

T 3

Reconstructed natural frequencies, frame example

Frequency (Hz)
ZXXXXXXXXXXXXXXCXXXXXXXXXXXXXXV

Mode Measured Element groups constraint Minimum norm.

1 226.8 226.9 226.8
2 275.2 275.1 275.0
3 537.4 537.4 537.4
4 861.5 861.5 861.5
5 974.8 974.8 974.8
6 — 1255.6 1251.2
7 — 1521.4 1520.3
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Figure 11. Adjustment of stiffnesses—element groups constraint.

test is that the updated parameters should provide physical understanding. In Figs 11 and
12, the stiffness adjustment, >DKe

i =2 />Ke
0i>2, is superimposed on the frame arrangement.

It can be seen that the minimum norm solution leads to parameters which do not seem
to be adjusted in any sensible way. The grouped-elements side constraint, on the other
hand, shows that the parameters which received the most correction were at the joints,
as would be expected. It is clear that the grouped-element constraint is preferable; it has
smaller changes than the minimum-norm solution, and the corner of the L-curve appears
to have resulted in a solution with physical understanding.

7. CONCLUSIONS

The importance of selecting a good side constraint has been demonstrated. The
regularisation parameter can be determined by a number of methods, but the present study
has indicated that the GCV method for truncating generalised singular values, and the

Figure 12. Adjustment of stiffnesses—minimum norm constraint.
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L-curves method, are robust in the presence of noise, and provide reliable results. A finite
element model was updated with physical test data by using a regularisation parameter
determined from an L-curve.
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APPENDIX A: CROSS VALIDATION FUNCTION

Equation (26) gives the cross-validation function as,

V0 =
1
n

s
n

k=1

(bk − b	 k (l))2. (A1)

To simplify the CV function consider the identity,

bk − b	 k =

bk − s
m

j=1

akj uj (l)

1− r̃kk
, (A2)

where,

r̃kk =

s
m

j=1

akj uj (l)− b	 k

bk − b	 k
, (A3)

and uj (l) is the jth term in u(l). Since b	 k = s
m

j=1

akj kuj (l) it follows that,

r̃kk = s
m

j=1

ajk (uj (l)− kuj (l))
bk − b	 k

. (A4)

Replacing the divided difference by a derivative it is found that,

r̃kk =
1

1bk 0 s
m

j=1

akj uj (l)1= rkk (l), (A5)
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where rkk is the kkth entry of the influence matrix given in equation (29). Combining
equations (A1), (A2) and (A5) gives,

V0 (l)=
1
n

s
n

k=1

G
G

G

F

f

bk − s
m

j=1

akj uj (l)

1− rkk

G
G

G

J

j

2

, (A6)

which is identical to equation (27).


