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This paper describes a procedure for reconstructing a finite element model of a structure
from modal data and connectivity information. This is an example of a classical ill-posed
problem; it is regularized by requiring that the mode! be near to a given one. The procedure
is iflustrated by constructing a finite element mode] of a cantilever beam from two or three
modes and frequencies.

1. INTRODUCTION

This paper is concerned with modelling the dynamics, in particular the lightly damped
infinitesimal vibration, of a structure. A common modelling situation is one in which the
researcher has some results predicted from an analytical modet on the one hand and some
experimentally acquired modal and/or natural frequency data on the other, and wishes to
bring them into agreement. How one brings them into agreement depends on the relative
confidence one has in the analytical model and in the experimental results. If the model
is trusted and the predicted values do not agree with the experimental results, then the
latter must be modified: sometimes experimental mode shapes are modified so that they
are orthogonal with respect to a given mass matrix. If, on the other hand, the experimental
results are given primacy, then the model must be modified. We are concerned primarily
with the [atter situation: a recent bibliography is given by Denman and Husselman (I] and
comments on the literature may be found in the papers cited below, particularly in those
by Baruch and Bar Itzhack [2], Berman and Nagy [3] and Kabe [4]; we comment only on
those papers which relate closely to our concerns,

When a structure is excited by impact with a hammer, or in sinusoidal vibration with
a shaker, the test results are analyzed by using the equations governing damped free
vibration; namely,

Mij+Cq+Kq=0,
657
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where M, C and K are the mass, damping and stiffness matrices, all square matrices of
order N. We are not interested, at this time, in identifying C; like others, we will interpret
the test results by omitting C altogether, so that the free vibration of the structure is
governed by

Mij+Kq=0
and individual modes
q =, sin w, ¢
are governed by
K¢, = w:M¢,. {1

An immediate consequence of this equation is that modes corresponding to different
frequencies w, and w, are orthogonal with respect to the mass matrix, and the stiffness
matrix:

oMo, =5,, Ko, =wid,. 2,3)

We are now in a position to start commenting on previous work. Baruch and Bar
Itzhack [2] assumed that M was known precisely. They took the measured modes ¥, and
modified them to obtain modes ¢,, satisfying equation (2). They then used a Lagrange
multiplier technique to find a stifiness matrix K satisfying equations (1), which was as near
as possible, in norm, to a given stiffness matrix K,. This procedure provided a promising
step in the solution, but had many deficiencies: it assumed that M was known; even if K,
had a definite form corresponding to a physical model there was no certainty that K, the
stiffness matrix that was derived, would have this same form.

Baruch and Bar Itzhack modified the measured modes to conform to the orthogonality
with respect to the known mass matrix; Berman [5], on the other hand, assumed that the
measured modes were correct and found a mass matrix M as near as possible, in norm,
to a given matrix M,, so that the measured modes were orthogonal to M. Berman and
Nagy [3] combined this step with Baruch and Bar Itzhack’s improvement of the stiffness
matrix to give the analytical model improvement (AMI) method; see also Wei [6, 7]. The
main deficiency in this method is that even if M, and K, have definite forms corresponding
to some physical model, M and K will not necessarily retain these forms. Kabe [4, 8, 9]
attempted to remove this deficiency by restricting the form of K, assuming that M was
known. He supposed that K had the same pattern of zero and non-zere terms as did K,
o preserving the connectivity of the model; he then had to seck the factors y,; by which
a term k; in K was obtained from the term (k,),; in K,. Kammer [10] formulated the same
problem using the language of projections and the Moore Penrose inverse, so simplifying
the analysis.

The roots of the method to be described in the present paper lie in the work of Berman
and Flannelly [11], O'Callaghan and Wu [12] and Ismail [13] . They used the fact that if
some of the modes ¢, are known, then equations (1)-(3) may ali be viewed as linear
equations for the coefficients in the matrices K and M. They combined these and other
equations; for example, stating that the total mass of the system was known, or that modes
were orthogonal with respect to the unknown mass matrix, and solved them in a least
squares fashion. In this approach it is easy—in fact, it is an advantage—to assume that
only some terms in K and M are non-zero, while the others are zero.

The present paper is an immediate generalization of the work of Ram and Giadwell [14].
They reconstructed the finite element model of a rod from two mode shapes and one
natural frequency. In essence, they took equations (1) for the two modes ¢, and ¢, and
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rearranged them to give a set of linear equations for the terms in the mass and stiffness
matrices. As it stands, this method is highly sensitive to errors in the measured data; to
overcome this sensitivity they formed an overdetermined set of equations, by using more
modal data, and solved them using least squares.

In this paper, we assume that we have some measured modal and natural frequency
data which we accept, we have correctly identified the system type, and have constructed
a finitc element model. We use the fact that the mass and stiffness matrices in a finite
element model of a system are constructed by piecing together the corresponding element
mass and stiffness matrices, foilowing a recognized assembly procedure, Each element mass
and stiffness matrix is constructed from the assumed element shape functions; a typical
term in each matrix is the product of an element parameter, i.e., an element mass or
stiffness, and an integral over the element. In the identification process, it is the element
parameters which are unknown. The integrals are known: they are generally integrals of
producis of the assumed shape functions or various derivatives of them. We find, as
expected, that the straightforward solution of equations (1) for the element parameters is
highly sensitive to errors in the modal data. Instead of overcoming this by setting up an
overdetermined system using extra modal data, we construct a simple regularization
procedure which finds a system near, in a least squares sense, to a given system,

2. RECONSTRUCTING THE FINITE ELEMENT PARAMETERS FROM EIGENDATA

The analytical model for the system is equation (1). If the model is a finite element one,
then the mass and stiffness matrices M and K are related io the element matrices M, and
K, by

M= 2 C:'[Micfs K= 2 CFKfCia (4)
i=1 i=1

where C; are connection matrices, and » is the number of elements. The element matrices

M, and K, have the form

M, =mp,, K, =k, (5}

where m, and k, are the physical parameters corresponding to the ith element and p, and
K; are known, square numerical matrices constructed from the assumed shape functions
for the ith element. If there is more than one mass and one stiffness parameter
corresponding to an element, then the sums in equation (4) can be taken over the number
of parameters, rather than over the number of elements.

We now rewrite equation (1), namely

Ko, = o Mé,, )
where K and M have order N, as a set of A equations
Ak—o!Bm=90 (6)

for the 2» unknowns (k,, m;);. Each element in A (B,) is formed as a sum of terms in ¢,
multiplied by terms in the matrices x,(jt;}. To see the gist of the replacement of equation
(1) by equation (6}, we show a simple example in which N =3 and K depends on four
parameters (&;)], as shown. Then we have the identity

k

ky —k; Kk ¢, ¢ ¢ 0 -9 k‘
—k4 ka k4 ¢2 = 0 0 ¢z ¢’3—¢1 kz
kz k4 k ¢3 ¢3 ¢| 0 ¢z k3
-4
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We may carry out this replacement process with Mé¢, and with K¢, to obtain equation
(6). How many equations of the form (6) we need, i.e., how many modes we need to
consider to find the 2# unknowns (k;, m,;)! depends on the size of 2» relative to N. The
equations are homogeneous, so that by themselves they can determine at most the 2n — 1
ratios of the 2n unknowns; to find the %, and m, themselves we must have some other
information, such as the total mass of the system.

The simplest case is that of a one-dimensional system, e.g., a rod or a beam, fixed at
onc end and free at the other. For such systems, #n = N, so that equation (6} for two modes
will provide 2n equations for the 2n unknowns. It was such a system that was considered
in reference [14]. We will consider the reconstruction of a cantilever beam model in section
3, comparing our results with those obtained by using the method of Berman and Nagy.
We compare with them because they found a mode! which was consistent with the
experimental data; they did not process the data, to make it fit some orthogonality
condition, for example.

In general, we must determine the 2n parameters by using an overdetermined set of
equations. If we do this, we can give added weight to the equations derived from the modes
in which we have most confidence, particularly the lower modes.

The remainder of the paper runs as follows. We consider a particular finite element
model, for a cantilever beam, in section 3; in section 4 we discuss a simple regularization
procedure; in section 5 we apply it to the problem of reconstructing the parameters in the
finite clement model.

3. A CANTILEVER BEAM MODEL

The most common FEM of a beam is based on Hermitian interpolation with the
generalized co-ordinates being the displacements and slopes at the nodes. In order to
reconstruct such a model from experimentally acquired modal data we would need to
measure slopes at the various points along the beam; this is a particularly difficult
experimental procedure. For this reason we construct a FEM based on quadratic spline
interpolation with simply displacements as generalized co-ordinates. For the same number
of elements, this model is stiffer than the Hermitian one; however, since it has only half
the number of degrees of freedom, it gives results as accurate as the other with only a little
more computation.

Suppose that the beam (0, L) is divided by knots (£)i*' such that

0=¢<&h< <=L
The quadratic B-spline S;{(x) shown in Figure 1 has support (£;_ |, &, ,) and is given by

B i+2 <x _éj)Z
Si(x) _j:;—; n'(ﬁ;) ’
where
(x—&)¥, x>¢,
(x—gpt= {0, )
and
-1 i+2
n(x) = EY '}1] (x —¢).

We note that S,(x) is positive in (&,_,, &, :); is zero and has zero slope at £,_ and &, ,;
and has a constant second derivative in each of the intervals (&_., &), (£, &),
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Figure 1. The quadratic B-spline function.

(&4 ¢, &4 2), the constants having signs +, —, +. Qualitative properties of these modes
and frequencies derived from this model were discussed by Gladwell [15].
The displacement in element i, {, < x <&, is

i+
wix)= Y aS8,(x).
=i
This means that if the positions of the knots are fixed, then the mass and stiffness
parameters for the ith element are
m;=p:4,, k= Ef,

while the coefficients of the matrices g, and «; correspond to the spline parameters &, as
generalized co-ordinates are

$iei L/
(w)y = j S(x)§(x)dx, (k)= f 87 (x)S7 (x)dx.
i &

The eigendata will consist of the values of w,, ..., w, and ®? for the two modes r and
s. We may convert the w values to o values by using the relations

wi=o_ 8, (&) + a0, 8(L), &= 8 () + oS,

where the second is used with 7 = 1 to satisfy the condition 8, = 0 at the fixed end. Having
found the o, for the two modes, we may set up equations (6) for each, ie.,

Ak—oBm=0=Ak—w’Bm.

Since the matrices K and M are both pentadiagonal and symmetric, the matrices A and
B will have a special form; in fact, since the involvement of &, in the matrix K, and that
of m; in M, is given by

-
i 2,3 3
2,3 2,3,4 13,4 4

3 34 3,45 4,5 3

n—1 n—-lLan n—-1an =n

n n

L

all the matrices A,, A,, B, and B, will be upper-triangular tridiagonal. This means that the
last equation of each set (6) will involve k, and m, only, i.e.,

a;n—wsb:m kn =0
afm_wsb;n ™, e



662 H. AHMADIAN ET AL.

As in reference [14), this provides a consistency condition relating the two frequencies w,
and ¢, to the rth and sth modes; namely,

w; = wlagbiui(ab). (7
When this condition is satisfied we may find the ratio k,,/m, from
kofm, = olb), (@} = @b fa},,

and then solve the remaining equations sequentially for k,_,jm,, m,_,jm,, i=1,2,...,
n — 1. We can find the absolute values of the stiffness and masses if we know, say, the total
mass.

In order to compare our method with that of Berman and Nagy, we performed the
following test. We took a datum cantilever beam with L =5, EI = 1 and pA4 = 1, divided
into five equal finite elements. We then changed the mass and stiffness of the second and
fourth elements so that the element stiffness and mass parameters were

1,0:75, 1,075, 4 1,0-85, 1, (-85, 1. &)

We computed the first three natural frequencies and mode shapes of this beam using the
finite element model. These are shown in Table 1.

We took the second and third computed modes, verified that the consistency condition
(7) was satisfied and, not unexpectedly, found that the computed element stiffnesses and
masses had precisely the ratios given by equation (8); the mode shapes were computed
accurately and the system was so small that there was little or no round-off error. Berman
and Nagy’s method does not compute the element masses and stiffnesses, but rather finds
mass and stiffness matrices which are nearest to those of the datum system. Thus, to find
the mass matrix M, they find M nearest to M, such that a given modes are orthogonal
with respect to M; specifically, they use the functional

W= [M; M~ MM; 20+ 3 T 2,6™Mb — 1),

i=1j=1

where | - || is the matrix norm given by the square root of the sum of the squares of the
matrix elements, and m is the number of modes making up ¢. Having found M, they find
K by using the functional

®© = M- — KOM-2 + 3§ A, (K — Moor?),

i=1j=1

N N
+ z z Asij(K - KT)ij’

i=1j=1
TasLE |
First three modes of the cantilever beam
w?= 00191t »?=08309 w?=71151
£ A hl r —A- Bl ~— —A N\
Exact Noisy} Exact Noisy Exact Noisy
005108 (0500 0-2446 0-2420 04913 05093
0-2000 0-1963 0-6090 0-5953 0-5594 0-5794
04164 0-4200 0-5772 (5635 —0-3938 —0-3798
0-6649 0-6769 -0-0095 —~0-0186 —0-4193 —~0-4078
0-9262 09230 —0-9275 —(-9472 0-9000 09159

T Eigenvalue of mode 1.
1 Mode shape element.
§ Mode shape correpted with +5% random errors.



663

MODEL IDENTIFICATION

0% 05 g5 6l-6F 68-3F 0s L6:0 (| [ £0-1 01~ i §'¢
£-801 £-801 £-801 8401 6-901 £-801 §6-1— §-T— — S0t~ 90-I— A 'y
t68% 68-29% S-76F 7-66Y ¢-96F 00% £s ¥ 78-S SLy 18-F D&% S 'y

££8 8 £e-8 Le1l £9-T1 £t g £6-0 LYAL 1 1] 66-0 I St
L-£61 6-T5¢ ¥-00¢ 8-81C 1-0T¢ L91T tT-E— §5-£— SE—  £9¢— 9L~ ¥ ¥'t
%44 L£81— S8 I-€£5 8-0¢8 0s¢ 1% P8-L s ¥9-¢— €L-5— 9 £'t

0 0 0 900 £6-1 0 0 0 0 80-0— €0-0— 0 $'T
9-59 81-81 R0-L 8€-6 76°S1 £e8 +99-0 ¥T5-0 GLO 10-1 96-0 1 ¥
6l £ C— ¥-00Z £-81C S1T L-91T g€~ ¢0-01— ct—  OI-vy— v~ v £T
g-9t% £ER1L7— cLe L-OFS £ 1es 05s 128 ¥-891 ¢e—  6+9 629 9 7T

0 0 0 3¢—  ¥0T—- 0 G G 0 ¥0-D LO-0 1] §1

0 0 0 1160— LL-S (] L] 0 0 PO-0—~ €0 0 ¥l

18 £-80T £€-8 98-LT 9T t£8 10-1 6v¥ -1 ¥38-0 ¥6-0 1 €1
3-70¢ 08y Lt — 007 6-G1<C 561 L91g PR 08-80¢ — §€—  L6f— 96%— - |
L-88¢ 0rs £9 T8¢ 9-2z¢% I-10% (139 £0-§ 9t-L 9% g 6L-¢ L6§ g I'l

pazuengEal ASION 198Xy AstoN i | {01 % pazuemial N Pexg  Aspol 10exg ssauyns oo
ASION sSpIl ASION st |
— ~ 4 \. ~ J _ﬁ._u.ﬁc.— i — N - A
qJom [uIsag UBULISF Jiom JUISAIJ uplLiag

01 X SSEW paynuapy

hd

—

——

SSIUYHS POYNLOP]

| 3]GU L 1 § pup 7 Sapou s $aoLqvue SSaUffis pup ssow paiiuapt
T amEvy



664 H. AHMADIAN ET AL,

where A,; and A, are sets of parameters designed to force the satisfaction of the equations
of motion and the symmetry of K.

In Table 2 are shown the initia} stifiness and mass matrices K, and M, used in Berman
and Nagy’s method, their computed matrices in the columns marked *‘exact”, and the truly
exact matrices computed by our method.

We now introduced a random 5% error into the mode shapes, as shown in Table 1, and
repeated the reconstructions; the resualts are shown in Table 2 in the columns marked noisy.
Clearly, the noise has little effect on Berman and Nagy’s predictions, but dramatically
affected ours. We will introduce a regularization in the following section: Berman and
Nagy's reconstruction is already regularized.

The natural frequencies and mode shapes computed from Berman and Nagy’s modeis
are shown in Table 3. Their model automatically reproduces the modes and frequencies
(2 and 3 in this case) that were used to construct it. We note that, whether using the exact
or noisy data, the method yields a first mode (Table 3) which is substantially different from
the actual first mode (Table {) of the system from which the modal data (for modes 2 and
3) was constructed. However, this is not the major drawback in Berman and Nagy's
method, rather, it is that they predict the K and M matrices, and not the individual
parameters &, and m,. Moreover, their matrices do not have the correct connectivity, the
correct patiern of zero and non-zero terms, as shown by comparing columns 3 and 4 of
Table 2 with column 5, and columns 9 and 10 with column 11.

4. REGULARIZATION

If one of the mode! parameters, say one of the masses, or the total mass, is known, then
the equations used to give the k and m may be written

Ax=b. )]

With new definitions of m and n, we may suppose that Ae R™*", xeR"” and be R™;
equations (9) are m equations for n unknowns, Since both A and b depend on the {noisy)
modal and frequency data, this is a classical ill-posed problem. It may be over-, under-
or mixed-determined, and smali changes in data may lead to large changes in “the
solution”. To regularize it, we replace it with a constrained least squares problem {(Golub
and Van Loan [16]):

minimize JJAx —bfl,  subject to ||Bx —d|| <.

If there is an g priori estimate X, in which we have more or less confidence, then we may
use

B=diag(d]/xl_u, dz/xz_q,. .. ,d“/xn_o). (10)
TABLE 3
Modal data of Berman and Nagy's identified model in Table 2
w3 = 08309 w}=7115]
r A— NS P,
w}=0-0286, exact  w?}=0-0245, noisy Exacl Noisy Exact Noisy
0-0607 0-0569 0-2446 0-2420 0-4913 0-5093
0-1961 0-1932 0-6090 0-5953 0-5594 05794
0-3762 0-3825 0-5772 0-5653 —(+3938 —0-3798
0-6374 0-6414 —0-0095 —0-0186 —0-4193 —~0-4078

0-9641 0-9512 —0-9275 ~09472 0-9000 0-9159
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TABLE 4
Identified mass and stiffness parameters of the cantilever beam

665

Test modes 1 and 2 Test modes 1 and 3 Test modes 2 and 3

[ A 1 r A B (_'_‘—_‘_'—A_'_‘_'_‘_“l
Physical Direct Reg, Direct Reg, Direct Reg,
parameters  solution A =12-85 solution A1=1342 solution 1=0033 Exact
k| 0-006 1-145 8:96 1-151 —140-7 0-991 1-000
ks 0160 501 517 0-900 149-9 0-758 0-750
ky —0-088 0-791 1-59 0-779 4492 1-009 1-000
ky 0637 0-906 1-38 0983 0524 0-645 0-750
ks —0-089 §-393 -0-09 0-590 1-256 0972 1-6006
m, 1193-6 1-000 543-5 1-000 41846 0-998 1-000
m; —105-4 1-000 —60-57 0-988 —3209 0-863 0-850
iy 219 0-980 96-1 0-993 —2500 1-009 1-000
my -56 1-023 —3.04 1-018 2258 0-788 0-850

We take d, large when we believe that |x, — x| is small, and vice versa.

Clearly, for given «, the constrained problem has a solution if min |Bx — d|| < . If this

is so, then there are two possibilities: either

IBA™D —dj <o,

in which case x=A"'b is the solution, where A* is the generalized inverse of A; or

|BA*b —dj >« and the solution satisfies the generalized normal equation

(ATA + AB"B)x = (AT + 1B'd),
where A is chosen so that

(Bx —dj = o.

We obtain the normal equation (11) by using the functional

JAx —b)* + A(}|Bx — dj* — 7).
Thus, for a given A, we call the solution of equation (11), x{4), put

S(4) = [Bx(i) —df,

and solve the equation

fAy=a?
TABLE 5
Predicted modal data of the identified cantilever beam model
(4 =0033)
w?=00193 @ = 0-7960 w?l = 67603
0-0516 0-2385 0-4856
0-2017 0-6000 0-5635
0-4189 0-5891 —0-4021
06702 0-0068 —0-4430

0-9364 —0-9379 0-8856

{11)

(12)
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TaBLE 6
Improved solutionn with weighied regularization (modes 2 and 3,
4 =0-029)
Siiffness coefficient Mass coefficient

Element —m™ ™M———— i —— A

number Cormputed Exact Computed Exact

| 1-000 1-000 1-000 1-000

2 0-735 0-750 0-845 0-850

3 1-000 1060 1-000 1-000

4 0-659 0-750 (-857 0-850

5 1-000 1-000 1-000 1-000

using the proposal of Reinsch [17]; namely,

y =1__M{__W_1}
T Ay ‘

o
An alternative is to use the algorithm proposed by Elaen [18].

5. REGULARIZED RESULTS

We return to the finite element model and use the noisy data shown in Table 1. We used
three combinations of the modal data, tack ms=1 and (k,, 5} = 1=(m,;)}, @ =05 and
() = 1. The results are shown in Table 4. We used the same value of « for each test and
found three different values of A. The value of 4 may be used as a rough estimate of the
error in the solution; equation (12) shows that, with a small A, more weight is given to
the first term, the deviation of Ax from b. The smallest A was found by using modes 2 and
3; this may be explained intuitively by noting that a 5% error in mode 1, which is
monotonically increasing, will have more effect than a corresponding error in either modes
2 or 3. The mass and stiffness matrices computed from the results in Table 4 are shown
in the columns marked “noisy regularized” in Tabie 2. The computed first three frequencies

14

12 T~

iy
&

Mass parameter
2
o=

=)
S
T

04 [ S | 1 I I 3 !
1 3 4 B 6 7 8 9 10
Element number
Figure 2. Identified mass paramelters of the beam model with ten elements:
A. case 3; @, case 4.

, exact; O, case t; W, case 2;
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14

Stiffness parameter

<
&
T

. !
041 2

Element number

Figure 3. Identified stiffness parameters of the beam model with ten elements: ——, exact; O, case 1; ll, case 2;
A, case 3; @, casc 4.

for this model are shown in Table 5; they may be compared with the noisy values shown
in Table 1.

Having found a reasonable solution for the physical parameters, by using modes 2 and
3, we may improve the model by fixing the values of those parameters in which we have
most confidence, and allowing flexibility in the others. Thus for those terms for which the
regularized solution differs from the datum by less than 5%, we take 4, = 10: for the others,
we take &, = 1. The model so found is shown in Table 6.

Finally, in Figures 2 and 3 and Tables 7 and 8 are summarized the results of a numerical
experiment on a cantilever beam modelled with ten elements. In the first line in Table 8
are shown the first five natural frequencies of the beam having the stiffiness and mass
parameters labelled “exact” in Figures 2 and 3. We considered four cases: in case 1, we
took the modal values for modes 2 and 3, corrupted then with 5% error, and assigned
equal confidence values to all the masses and stiffnesses (4, = 1); the base valucs of the
masses and stifinesses were also taken to be all equal. The computed masses and stiffnesses
are shown in Figures 2 and 3 and the compuied frequencies are shown in line 2 of Table &.
We noted that only two of the computed stiffnesses and two of the computed masses
differed significantly from the base values; namely, k,, &, and m2;, m;. In the second case
we assigned less confidence to these values, i.e., we assigned to 4, =1 to them, and 4, = 10
to the others. The results of case 2 are “closer” than those of case 1, as indicated by the
fact that the A value is halved. In cases 3 and 4 we repeated the analysis with 3 modes,
rather than 2. .

TABLE 7
Input data to the identification processes of the beam model with ten
elements
Case number Test modes o 4

1 2and 3 50 Li=1...,19%

2 2 and 3 50 1,i=13,8; 10 else

3 2,3 and 4 2-5 lLLi=1,...,19

4 2,3 and 4 2-3 i,i=3,8 10 else
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TABLE 8
Predicted frequencies of the identified beam with ten elements
A o] w? w} w? w?
Exact — 00012 0-0497 (-4000 1-639 4914
Case 1 00110 00012 0-0499 0-4044 1-5332 4952
Case 2 0-0050 0-0013 00479 0-383% 1-569 4-892
Berman modes 2 and 3 — 0-0015 Q-0497 0-4000 1-652 4-897
Case 3 00716 0-0011 0-0455 03676 1-582 4773
Case 4 0-0474 0-0013 (-0480 0-3647 1-566 4756
Berman modes 2, 3 and 4 — 0-0041 0-0479 0-4000 1-539 4868

It is interesting to note that, in every case, the computed natural fraquencies are closer
to those used in the reconstruction and, furthermore, the remaining frequencies 1, 4 and
5in cases | and 2, and | and 5 in cases 3 and 4, are recovered with good accuracy; this
is not so in Berman’s analysis using modes 2, 3 and 4; the first natural frequency is not
well reproduced.

6. CONCLUSIONS

The reconstruction of a model, finite element or otherwise, from modal and frequency
data is an ill-posed problem. Generally, there is no well-defined, unique, solution; instead
there is a class of models, each of which predicts approximately the given data;
regularization provides a procedure for selecting a particular model from the class.

The regularization which we have used is simply to require that the model which we are
secking be near some preassigned one; in practice, the analyst would have some a priori
idea of what the model should be.

We have shown that, by rewriting the frequency equations, we may isolate the unknown
model parameters, and then apply established regularization procedures to identify an
acceptable maodel.

There are still many matters to be investigated; whether it is better to use higher
frequency or lower frequency modes to attempt to construct the model; how the procedure
performs in practice when there are equal or very near natural frequencies; how the
procedure may be modified to accommodate incomplete mode shapes; how the procedure
performs for systems with many degrees of freedom. The answers to these questions are
the subject of current research.
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