
This article appeared in a journal published by Elsevier. The attached
copy is furnished to the author for internal non-commercial research
and education use, including for instruction at the authors institution

and sharing with colleagues.

Other uses, including reproduction and distribution, or selling or
licensing copies, or posting to personal, institutional or third party

websites are prohibited.

In most cases authors are permitted to post their version of the
article (e.g. in Word or Tex form) to their personal website or
institutional repository. Authors requiring further information

regarding Elsevier’s archiving and manuscript policies are
encouraged to visit:

http://www.elsevier.com/authorsrights

http://www.elsevier.com/authorsrights


Author's personal copy

Efficient model order reduction for dynamic systems with
local nonlinearities

Mohsen Mohammadali n, Hamid Ahmadian
Center of Excellence in Experimental Solid Mechanics and Dynamics, School of Mechanical Engineering, Iran University of Science and
Technology, Narmak, Tehran 16844, Iran

a r t i c l e i n f o

Article history:
Received 22 December 2012
Received in revised form
29 October 2013
Accepted 1 November 2013
Handling Editor: M.P. Cartmell
Available online 8 December 2013

a b s t r a c t

In the nonlinear structural analysis, the nonlinear effects are commonly localized and the
rest of the structure behaves in a linear manner. Considering this fact, this research work
proposes a harmonic balance solution in order to determine the nonlinear response of the
structures. The solution is simplified by using an exact dynamic reduction along with the
modal expansion technique. This novel approach, which is applicable to both discrete and
continuous systems, converts the system equations of motion in each harmonic to a small
set of nonlinear algebraic equations. The full set of system equations is reduced to a
discrete system with a few generalized degrees of freedom (DOFs) confined to the
localized nonlinear regions. The resultant reduced order model is shown to be accurate
enough for determining the periodic response. To demonstrate the capability of the
proposed method, numerical case studies for continuous and discrete systems, including
systems with internal resonance, have been studied and the outcomes are validated with
benchmark studies. In addition, the method is applied in the identification process of an
experimental test setup with unknown frictional support parameters, and the results are
presented and discussed.

& 2013 Elsevier Ltd. All rights reserved.

1. Introduction

In many assembled structures with local nonlinearities, except for the local regions with nonlinear effects, most parts
of the structures are assumed to behave linearly. Typical engineering examples of these localized nonlinearities
in the mechanical systems are friction and vibro-impact in joint interfaces, local buckling, cracks, nonlinear vibration
isolator, dead zone (gap) and squeeze film dampers. Consequently, the behavior of these systems is regarded as
nonlinear.

Dynamic models of these structures are employed to estimate the nonlinear responses for detailed studies in various
applications such as identification of unknown structural parameters or health monitoring of the structures. Usually, the
dynamic properties of the structures' components are known (from analysis or measurements) as separate ingredients, and
are used in the development of the assembled system models. Most nonlinear effects are confined to the interfaces between
these components, and much time and effort are spent in the development of models that accurately estimate the response
in the presence of these nonlinear effects.
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Any nonlinear response analysis involves significant computational efforts, especially when the full set of the dynamic
model equations is used for the response predictions. The computational efforts increase even further, when the nonlinear
model parameters are related to temperature, preload, deflection, etc.

There is a significant motivation to develop new techniques in the model order reduction (MOR) to project the nonlinear
model to a condensed space and reduce the computational cost considerably. However, there are other issues such as the
accuracy of these MOR techniques and selection of a suitable solution algorithm that must be considered in order to obtain
an accurate prediction of the system nonlinear response.

Linear reduction techniques such as Guyan reduction, improved reduced system (IRS), iterated improved reduced system
(IIRS), system equivalent reduction expansion process (SEREP) and component mode synthesis (CMS) are applied to reduce
nonlinear discrete models. Ref. [1] provides details of these techniques.

Other reduction methods applied to the continuous and discrete models commonly use linear normal modes (LNMs) of
the linearized systems or nonlinear normal modes (NNMs). Generation of NNMs for a small system requires significant
effort [2,3], especially in the presence of internal resonances [4] and/or external excitations [5]. In large systems, one may
use other reduction techniques and then generate the NNMs of the reduced model [6].

The reduction methods based on the linear MOR techniques lead to acceptable answers for weakly nonlinear systems, and
by increasing the nonlinearity their accuracy is reduced due to their inaccurate approximations. In local equivalent linear
stiffness method (LELSM) [7] the equivalent linear model of a nonlinear system is iteratively calculated with high computational
cost, and the mode shapes of the resultant linear model are used for condensation of the nonlinear system in each step.

Choosing an appropriate solution algorithm is another aspect of nonlinear system studies. The harmonic balance method
(HBM) predicts the steady-state periodic solution of structures with various types of nonlinearities. The HBM is applied to
nonlinear problems such as forced excited, strongly nonlinear response, chaotic behavior, and internal resonance. In
addition, the HBM is frequently used for identification and health monitoring of nonlinear systems. Furthermore, this
technique is employed to estimate NNMs of nonlinear systems [2].

The HBM expands periodic response of a nonlinear system as truncated Fourier series, whose coefficients are determined
by solving a set of nonlinear algebraic equations. Typically, the solution accuracy is improved by using higher-order Fourier
series expansions. However, in many cases, a solution of one-term harmonic balance has adequate correlation with observed
experimental data [8].

Generally, the amplitudes of higher terms in Fourier series expansions are small, and are not clearly observed in
measured experimental data due to noise contamination. Therefore, one may ignore the higher terms in the identification
process and expand the solution using only the lower dominant harmonics.

The harmonic balance concept is further developed to address various needs of a large class of problems. Incremental
harmonic balance (IHB) [9] suggests a new method based on the HBM to determine the frequency responses of nonlinear
systems. With the aim of reducing the computational cost and preserving the accuracy, adaptive HBMs (AHBMs) [10]
propose selection algorithms for the order of the Fourier series expansion.

An exact reduction technique in conjunction with the HBM was proposed by Kim and Noah [11,12] for the discrete
nonlinear systems. The method condenses the size of the problem into the DOFs directly subject to the nonlinear restoring
forces; henceforth, these DOFs are called nonlinear DOFs. The size of the reduced model depends on the number of DOFs
considered in the modeling of the localized nonlinearity. Therefore, the accuracy of the obtained results is very sensitive to
the number of the nonlinear DOFs, especially when the deformed state of the nonlinear region changes significantly.

To resolve this drawback, the present study suggests expanding the nonlinear DOFs response by a few base functions.
The base functions are eigenfunctions of the condensed system at each harmonic. Equally, the method extends to
continuous systems of the same conditions.

The organization of this paper is as follows. In Section 2, a brief description of the method given in [11,12] is presented,
and is further developed by a modal expansion technique. The method is extended for continuous systems as well. To
demonstrate the capabilities of the suggested method, results of continuous and discrete case studies with/without internal
resonance are compared to numerical and harmonic balance results in Section 3. Furthermore, in this section, the proposed
method is employed for identification of an actual nonlinear system where the response is obtained from an experimental
test setup. The parameters of nonlinear effects in the model are identified by minimizing the difference between the
predicted and observed responses. Finally, Section 4 draws the conclusions.

2. Model reduction of dynamic systems with local nonlinearities

A general discrete dynamic system with localized nonlinearities is considered here, and the proposed procedure for its
reduction is described. Subsequently, the technique is extended to continuous dynamic systems with localized nonlinearities.

2.1. Model reduction of discrete systems

The general form of the nonlinear discrete system is

M €qþC _qþKqþ f nl ¼ f E ; (1)
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where q is the field deformation vector, M, C and K are mass, damping and stiffness matrices, respectively, f nl is the
nonlinear restoring force and f E is the periodic excitation force. The vectors q, f nl and f E are functions of time but the time
argument, t, is dropped for convenience. The steady-state solution of Eq. (1) with the period of T ¼ 2π=ω is expanded in the
following form:

q¼ ∑
n

j ¼ 0
ðψ j cos ðωjtÞþφj sin ðωjtÞÞ; (2)

where n is the truncation order, ψ j and φj are vectors of the vibration amplitude at the frequency ωj ¼ jω. Substituting Eq. (2)
into Eq. (1) and employing Galerkin weighted residual method, the equations of motion weighted by the corresponding sine
or cosine functions are integrated over time and are decoupled as

�ω2
j Mψ jþωjCφjþKψ jþf nlcj ¼ f Ecj ;

�ω2
j Mφj�ωjCψ jþKφjþ f nlSj ¼ f ESj ; (3)

where

ff XCj
; f XSj

g ¼ ð1þsgnðjÞÞ ω
2π

Z 2π=ω

0
ff X cos ðωjtÞ; f X sin ðωjtÞgdt X ¼ nl; E:

Eq. (3) expresses one static equilibrium condition (j¼ 0) and 2n dynamic equations (j¼ 1;2;…;n). Employing the unit
imaginary, ι¼

ffiffiffiffiffiffiffiffi
�1

p
, Eq. (3) is rewritten in a complex form as

ð�ω2
j M� ιωjCþKÞχ jþ f nlj ¼ f Ej ; (4)

where

χ j ¼ ψ jþ ιφj;

f Xj
¼ f XCj

þ ιf XSj
X ¼ nl; E:

In the case of localized nonlinearities, it is possible to write the nonlinear force vector in the following form:

f nl ¼
f nlα
0

� �
: (5)

Furthermore, the deformation field is divided into two vectors with subscripts α and β, which stand for active or master
coordinates and deleted or slave coordinates, respectively. The master coordinates experience nonlinear restoring forces,
and linear restoring forces drive the slave coordinates. Furthermore, vector f E , and matrices M, C and K are partitioned
appropriately with respect to master and slave coordinates with subscripts α and β. Subsequently, the equations of motion
(4) are rearranged as

�ω2
j

Mαα Mαβ

Mβα Mββ

" #
� ιωj

Cαα Cαβ

Cβα Cββ

" #
þ

Kαα Kαβ

Kβα Kββ

" # !
χ αj
χ βj

( )
þ f nlα

0

� �
¼

f Eα
f Eβ

( )
: (6)

One can eliminate χ jβ in Eq. (6) from the first row using the second row, this results in the exact reduced form of
equations of motion

ð�ω2
j Mαα� ιωjCααþKαα�KMj

Þχ αj þ f nlαj ¼ f Eαj � f ETβj
; (7)

where

KMj
¼ Ajð�ω2

j Mβα� ιωjCβαþKβαÞ;

f ETβj
¼ Ajf Eβj ;

Aj ¼ ð�ω2
j Mαβ� ιωjCαβþKαβÞð�ω2

j Mββ� ιωjCββþKββÞ�1:

The deformation field vector, χ αj , can be expanded with a set of suitable base functions as described in the following. An
orthogonal basis that consists of arranged vectors with minimum energy required to excite is an appropriate basis to
approximate the deformation field vectors and reduce the size of the condensed system. To find such a delicate basis, KMj is
evaluated at the frequency ωj and is considered as a constant stiffness matrix. This leads to a linearized eigenvalue problem
of

ð�λ2jkMαα� ιλjkCααþKαα�KMj Þϕjk ¼ 0; (8)

where ϕjk is the kth right eigenvector and λjk is its companion eigenvalue. The vectors ϕjk form an orthogonal basis for χ αj
and by increasing the index k, the required energy to excite ϕjk grows in the linearized condensed system. The deformation
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field χ αj is expanded using a few modes of orthogonal basis ϕjk as

χ αj ffiΦjðηcj þ ιηsj Þ; (9)

where ηcj and ηsj are unknown real vectors and Φj is the modal matrix in which mode shapes, ϕjk, are arranged in column
fashion. Substituting Eq. (9) in Eq. (7) and using Galerkin weighted residual method, the equations of motion are
transformed into

Θjðηcj þ ιηsj Þþ〈f nlαj ;Φj〉¼ 〈f Eαj� f ETβj
;Φj〉; (10)

where

Θj ¼ 〈ð�ω2
j Mαα� ιωjCααþKαα�KMj ÞΦj;Φj〉;

and 〈,〉 is the inner product operator. The real and imaginary parts of Eq. (10) produce two different sets of nonlinear
equations, and are written in the matrix form as

ReðΘjÞ � ImðΘjÞ
ImðΘjÞ ReðΘjÞ

" #
ηcj
ηsj

( )
þ

Reð〈f nlαj ;Φj〉Þ
Imð〈f nlαj ;Φj〉Þ

8<
:

9=
;¼

Reð〈f Eαj � f ETβj
;Φj〉Þ

Imð〈f Eαj � f ETβj
;Φj〉Þ

8<
:

9=
;: (11)

The periodic solution of equations of motion is obtained by solving the above nonlinear algebraic equations.

2.2. Reduction of continuous systems

The general form of the equations of motion for the continuous system is

M €qþC _qþKqþ f nl ¼ f E ;

Lq¼ 0 xAxB: (12)

where q is the field deformation vector, K, M and C are linear stiffness, mass and damping operators, respectively, f nl is the
nonlinear restoring force, f E is the periodic external force, and L is a matrix of the linear boundary operator at the boundary
coordinate xB, and may contain time derivatives. The vectors q, f nl and f E are functions of position vector, x, and time, t,
which these arguments are dropped for convenience. The steady-state solution of Eq. (12) with the period of T ¼ 2π=ω is
obtained by expanding the deformation field based on the harmonic balance procedure:

q¼ ∑
n

j ¼ 0
ðψ j cos ðωjtÞþφj sin ðωjtÞÞ; (13)

where ψ j and φj are undetermined functions of the vibration amplitude at the frequency of ωj ¼ jω. Recalling the same
procedure and notations explained in Section 2.1, the continuous equations of motion are decoupled into one static (j¼ 0)
and n dynamic (j¼ 1;2;…;n) equations as

ð�ω2
j M� ιωjCþKÞχ jþf nlj ¼ f Ej ;

Ljχ j ¼ 0 xAxB: (14)

For localized nonlinearities, the domain is partitioned into master and slave regions with respect to nonlinear forces,

f nl ¼
f nlα a0 xAxα

0 xAxβ

(
: (15)

Consequently, the field parameters and the equations of motion in Eq. (14) are separated into the following forms:

ð�ω2
j M� ιωjCþKÞχ αj þ f nlαj ¼ f Eαj xAxα;

Ljχ j ¼ 0 xA ðxB \ xαÞ; (16)

and

ð�ω2
j M� ιωjCþKÞχ βj ¼ f Eβj xAxβ;

Ljχ j ¼ 0 xAðxB \ xβÞ: (17)

In order to solve Eq. (16), additional information is required that can be obtained from the compatibility and continuity
requirements on the interface between xα and xβ regions, named xαβ . Here Eq. (17) is used for constructing a linear relation
that relates the internal forces at xαβ to the external forces and deformations at xαβ ,

f Iβj ¼Dχ βj ¼KMj χ βj þ f ETβj
xAxαβ; (18)

where f Iβj is the internal force, D is the differential operator transforming deformation field χ βj to internal force, KMj
is an

equivalent stiffness and f ETβj
is the projection of external forces (i.e., f Eβj ) on the interface, xαβ . Due to continuity of the
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deformation and the internal forces at xαβ ,

f Iβj ¼ � f Iαj
χ βj ¼ χ αj

xAxαβ : (19)

Subsequently, the linear relation in Eq. (18) is imposed as a boundary condition on Eq. (16) and leads to

ð�ω2
j M� ιωjCþKÞχ αj þ f nlαj ¼ f Eαj �f ETβj

xAxα;

Ljχ j ¼ 0 xAðxB \ xαÞ;
ðD�KMj Þχ αj ¼ 0 xAxαβ ; (20)

where f ETβj
is modeled as an external force applied to the border xαβ . Again, in order to find an appropriate orthogonal basis

for χ αj , KMj and Lj are evaluated at the frequency ωj so,

ð�λ2jkM� ιλjkCþKÞϕjk ¼ 0 xAxα;

Ljϕjk ¼ 0 xAðxB \ xαÞ;
ðD�KMj Þϕjk ¼ 0 xAxαβ; (21)

is the eigenvalue problem of the linearized condensed system, and ϕjk is the kth eigenfunction vector and λjk is its
companion eigenvalue.Therefore, χ αj can be approximated by a few mode shapes of the condensed system in the form of Eq.
(9) (i.e., χ αj ffiΦjðηcj þ ιηsj ÞÞ. Substituting Eq. (9) in Eq. (20) and using Galerkin method, the equations of motion are rewritten
in the algebraic form of

Θjðηcj þ ιηsj Þþ〈f nlαj ;Φj〉¼ 〈f Eαj � f ETβj
;Φj〉; (22)

where

Θj ¼ 〈ð�ω2
j M� ιωjCþKÞΦj;Φj〉:

The real and imaginary parts of Eq. (22) result in two different nonlinear equations,

ReðΘjÞ � ImðΘjÞ
ImðΘjÞ ReðΘjÞ

" #
ηcj
ηsj

( )
þ

Reð〈f nlαj ;Φj〉Þ
Imð〈f nlαj ;Φj〉Þ

8<
:

9=
;¼

Reð〈f Eαj � f ETβj
;Φj〉Þ

Imð〈f Eαj � f ETβj
;Φj〉Þ

8<
:

9=
;: (23)

The final solution of the equations of motion is achieved by solving Eq. (23).

3. Numerical results and discussion

In what follows, to demonstrate the capabilities of the proposed reduction technique, discrete and continuous nonlinear
vibrating systems are modeled numerically with weak and essential nonlinearities, and the results are compared with
benchmark solutions.

The steady-state responses of these systems under periodic excitation are determined by the numerical method, the
HBM and the proposed method. The resultant nonlinear algebraic equations of the HBM and the suggested method are
solved by Newton–Raphson algorithm. The computational cost of Newton–Raphson algorithm at each step is proportional to
the squared number of equations.

In addition, an experimental setup is prepared, and the method is used in identification of its nonlinear parameters. In
these studies, the suggested method is applied to the problems, including popular types of nonlinearity consisting of dry
friction, cubic stiffness and vibro-impact.

3.1. Discrete system case study

A bar resting on a rigid base on one side is employed as the first case study (see Fig. 1). This is an example of a system
with a frictional interface. Using the distributed Jenkins element, the non-dimensional equations of motion for this system

Fig. 1. A resting bar on a frictional support.
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with Kelvin–Voigt internal damping are:

∂2u
∂t2 � 1þc ∂

∂t

� � ∂2u
∂x2 þ f nl ¼ f E;

1þc
∂
∂t

� �
∂u
∂x

¼ ku x¼ 0;

1þc
∂
∂t

� �
∂u
∂x

¼ 0 x¼ xL; (24)

where

f nl ¼ kcðu�sÞðHðxÞ�Hðx�xcÞÞ;
f E ¼ FEδðx�xLÞ cos ðωtÞ;

∂s
∂t

¼
0 ju�sjoΔstick
∂u
∂t ju�sjZΔstick

(
;

and u is the axial displacement, c¼ 1=50 is the internal damping coefficient, FE ¼ 1 is the external force amplitude, k¼ 1 is a
lumped stiffness at the left end of the bar, H is the unit step function and s, kc ¼ 6 and Δstick ¼ 1 are slip, stiffness and
allowable stick displacement of the Jenkins elements, respectively.

Fig. 2. The fundamental amplitude at x¼ 0 when the frequency is swept downward.

Fig. 3. The time responses of the bar at x¼ 0 for various mesh sizes at ωn ¼ 1:24.
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This system is discretized using the finite element method. The contact region and the rest of the domain are divided into
5 and 8 elements, respectively. The steady-state amplitude of the discretized system at the fundamental frequency for the
node placed at x¼ 0 is shown in Fig. 2 (frequency is swept downward). The excitation frequency is normalized by the real
part of the first natural frequency of the linearized system, ω1 ¼ 1:21 (i.e., ωn ¼ω=ω1).

The response of the system, truncated to order five (i.e., n¼ 5) at the resonance frequency ωn ¼ 1:24, is shown in Fig. 3.
In order to study the accuracy of results the mesh size is first refined to 10 and 16, then to 40 and 64 elements (labeled as 10|
16 and 40|64) for the contact and free region, respectively. In addition, the proposed method is applied to all three
discretized systems using the first three mode shapes of the condensed system at the frequency ωn ¼ 1:24. Only the
resultant time response of the node placed at x¼ 0 is shown for summary and clarity in Fig. 3.

Fig. 3 reveals the three first mode shapes of the condensed systems are sufficient to predict the motion accurately. Using
the proposed method, the computational cost is reduced by around 64 percent, 91 percent and 99.5 percent for 5|8, 10|16
and 40|64 mesh sizes compared with the HBM, respectively.

One can conclude the three first mode shapes of the condensed systems are sufficient to predict the deformation field of
the nonlinear region for this case. The accuracy of the results depends on the discretization errors involved in estimating
these mode shapes. In other words, using the mode shapes of a precisely condensed system leads to results that are more
accurate. Therefore, it is expected that the reduction of a system based on the continuous method provides results that are
more reliable.

3.2. Continuous system case studies

Case 1. The system shown in Fig. 1 with equations of motion (24) is condensed using the suggested method of continuous
systems with the truncation order of five. Its first three mode shapes are used for reduction of the system at the frequency
ωn ¼ 1:24. The displacement at x¼ 0 is shown in Fig. 4.

From Fig. 4, one can observe the results of the proposed method applied to the continuous system are more accurate
than those applied to the discretized system with 104 elements (40|64), while both systems are reduced with their first
three mode shapes.

Case 2. The equations of motion of a cantilever beam (see Fig. 5) modeled with Timoshenko beam theory in a non-
dimensional form are:

M €qþC _qþKqþf nl ¼ f E;

Liq¼ 0 xAxBi ; (25)

Fig. 4. The time responses of the bar at x¼ 0.

Fig. 5. An elastic beam with localized nonlinearity of the cubic form.
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where

M¼
1 0
0 1þm δðx�xEÞ

" #
; K¼

� ∂2
∂x2 þκ κ ∂

∂x

�κ ∂
∂x �κ ∂2

∂x2

2
4

3
5; C¼

0 0
0 cw

" #
;

Fig. 6. The lateral displacement amplitudes of the beam free-end at each harmonic (a) weakly nonlinear system and (b) essentially nonlinear system.

Fig. 7. The lateral displacements of the beam free-end at interested frequencies (a) weakly nonlinear system at ωn ¼ 2:02, (b) essentially nonlinear system
at ωn ¼ 2:08 and (c) essentially nonlinear system at ωn ¼ 2:15.
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q¼ ϕ

w

� �
; f nl ¼

0
Γw3ðHðx�ðxL�ΔÞÞ�Hðx�xLÞÞ

( )
; f E ¼

0
FEδðx�xEÞ cos ðωtÞ

( )
;

L1 ¼
1 0
0 1

	 

x¼ 0; L2 ¼

∂
∂x 0
κ κ ∂

∂x

" #
x¼ xL;

Fig. 8. Plot of the MAC values between the mode shapes.

Fig. 9. The experimental test setup and dimensions.
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and κ¼ 0:331, cw ¼ 10�5, FE ¼ 8� 10�8, δ and H are the Dirac delta and the unit step functions, respectively. m (mass of a
lumped mass) and xE are chosen such that the second resonance frequency is equal to three times that of the first resonance
frequency. In the case of weak and essential nonlinearity, Γ shown in Fig. 5 is set to 15� 10�7 and 100� 10�7, respectively.

The continuous system is discretized with the first r linearized undamped mode shapes of the system. Subsequently, the
discretized system is solved by numerical and harmonic balance methods. The proposed method is also applied to the
equations of motion with first s mode shapes of the condensed system, and the periodic responses are expanded to 11th
harmonics. The amplitudes of each harmonic at the free end are shown in Fig. 6 around first resonance frequency. The real
part of the first natural frequency of the linearized system, ω1 ¼ 6:97� 10�5, is used to normalize the excitation frequency
(i.e., ωn ¼ ω=ω1).

As shown in Fig. 6a, a resonance occurs at ωn ¼ 2:02 in the weakly nonlinear system. The response of the system at this
frequency is shown in Fig. 7a at the free end. The predicted response of HBM with r¼ 3 is accurate, and when r¼ 2 the
results become unacceptable. However, with s¼ 1, the proposed method can predict the response with an acceptable
correlation. In comparison with the HBM, the proposed method reduces the computational cost by 90 percent.

The essentially nonlinear system is studied at two interested frequencies that are shown in Fig. 6b. The time responses of
this system at these frequencies are shown in Fig. 7b and c at the free end. In these cases, the proposed method with s¼ 1
cannot predict the response with acceptable accuracy. Nevertheless, by increasing s, the results correlate with the other
methods.

The mode shapes of the condensed system, used in expansion of deformation field, are linearly independent over the
reduced domain. Therefore, the same number of these mode shapes covers more space than the mode shapes of the original
system over the localized nonlinearity region. The degree of consistency over the reduced domain between these two sets of
mode shapes for j¼ 1 is shown in Fig. 8 using the Modal Assurance Criteria (MAC).

From Fig. 8, one can conclude that the proposed method with two mode shapes (i.e., s¼ 2) and the HBM with 10 mode
shapes (i.e., r¼ 10) lead to results with the same precision. In this example, the suggested method reduces 96 percent of
computational cost compared with the HBM.

3.3. Experimental case study

The aluminum beam shown in Fig. 9, resting on a frictional support at one end and free on the other side, is employed as
an experimental case study. A constant normal preload at the support is provided by suspended mass blocks. The dynamic
response of the system becomes nonlinear when the motion amplitude is large enough to cause slip and vibro-impacts at
the support.

Fig. 10. The measured frequency responses for the six excitation levels, ◇ shows measured points.

Table 1
Resonance data extracted from experimental measurements.

Load case 1 2 3 4 5 6

Resonance frequency (Hz) 42.48 42.41 42.38 42.32 42.24 42.11
Force amplitude (mN) 121 170 198 217 246 278
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The frequency responses of the system at six excitation levels are shown in Fig. 10. The results summarized in Table 1 are
obtained by exiting the system at point E and measuring the response at point 7 (see Fig. 9). At each excitation level, a single
harmonic force is applied to the beam at its resonance frequency. A laser Doppler is employed to record velocities of the
system at points 1–7.

It is noted that the vibro-impacts and the slip at support excite even and odd higher harmonics, respectively. The
dominant higher harmonics in the recorded data are all even harmonics, indicating the nonlinear phenomenon is due to the
vibro-impacts. Furthermore, the internal resonance between the first and second modes of the beam (ω2 ¼ 6ω1) causes the
amplitude of 6th harmonics to be larger than other higher harmonics from the load case 4 onward.

Based on the observed behavior of the system the support reaction force is related to the beam deformation field by
Hunt–Crossley model [13] in normal direction. The reaction forces in tangential direction are modeled as uniformly
distributed stiffness, as no-slip motion was observed in the frictional support. The equations of motion of the system with
the displacement field q¼ fu;ϕ;wgT , representing axial, rotational and lateral motions, in a non-dimensional form are

ðM1þδðx�LEÞM2Þ €qþC _qþKqþ f nl ¼ f Eþ f E0 ;

Lq¼ 0 xAxB: (26)

The mass distribution of the beam is M1, and M2 introduces the mass effects of the force transducer. The stiffness
damping and boundary condition operators of the system are defined as

K¼
� ∂2

∂x2 0 0

0 � ∂2
∂x2 þκ þκ ∂

∂x

0 �κ ∂
∂x �κ ∂2

∂x2

2
6664

3
7775; C¼ cK;

L¼ 1þ ∂
∂t

c
� � ∂

∂x 0 0
0 ∂

∂x 0
0 κ κ ∂

∂x

2
64

3
75; xB ¼ 0; L: (27)

Table 2
Comparison of dominant harmonics in identified model and recorded experimental data.

Load case Harmonic number

1 2 4 6

aR=aS Δθ1 aR=aS Δθ1 aR=aS Δθ1 aR=aS Δθ1

1 1.003 �0.079 – – – – – –

2 1.002 �0.014 – – – – – –

3 1.002 0.032 – – – – – –

4 1.006 0.950 – – – – 0.947 0.724
5 1.007 0.129 1.001 0.846 0.920 �14.448 0.997 �0.834
6 1.013 0.225 1.001 0.342 0.962 �11.696 1.006 0.265

Fig. 11. The time responses of the experimental setup at the resonance frequency of the load case 6.
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where κ¼ 0:331 is the shear correction factor of the beam section. The nonlinear restoring forces are

f nl ¼ f cðHðxÞ�Hðx�LcÞÞ;

f c ¼
kT ðuþϕÞ;3kT ðuþϕÞ; kNw 1þ ce

_w �ð Þ _w
� �n oT

w40

f0;0;0gT wr0

8<
: ; (28)

where kT and kN are the contact tangential and normal stiffness, ce is a constant coefficient, all of which are unknown and
are selected as design variables in this identification practice. _w �ð Þ is the initial normal impact velocity. The external forces
are also defined as

f E ¼ f0;0; FE cos ðωtÞgTδðx�LEÞ;
f E0 ¼ f0;0; F0gT ðHðxÞ�Hðx�LcÞÞ; (29)

where FE is the excitation force amplitude and F0 is the constant contact preload.
Using the proposed method for the continuous systems, the beam model is condensed to the nonlinear domain at the

excited frequencies, and its first eight mode shapes are utilized to reduce the system size.
The excitation force applied to the test structure was introduced to Eq. (26) and the unknown parameters of the contact

are tuned to minimize the difference between the measured responses and the model predictions. In the identification
procedure, initial values for the parameters are selected and the residues are minimized using a gradient-based
optimization method. The identification procedure was repeated for a number of initial guesses to ensure the uniqueness
of the identified parameters.

Unknown parameters of the contact model are identified, and the results of the analytical model are compared to the
recorded experimental data in Table 2. In this table the ratios of the recorded harmonic, aR, to the one obtained from the
simulation, aS, are tabulated. It is seen that these ratios in the dominant harmonics of the response are close to unity. Also, in
this table the phase difference, Δθ1, between the measured and the simulated responses of the dominant harmonics is
tabulated. It is seen that in all harmonics except for the fourth harmonic, the phase difference is less than 11. The maximum
errors are observed in the fourth harmonic with 8 percent error in the amplitudes, and 141 phase difference.

The correlation between the recorded velocity and those obtained from the identified model for the load case 6 is shown
in Fig. 11. Excellent agreements between the two sets of measured and model predictions are achieved. It indicates that the
condensed model captures all the dominant effects of the original system, and it was successfully used for identification of
the contact parameters.

4. Conclusions

This paper proposed a condensation technique for solving nonlinear systems with localized nonlinearities under periodic
motion. The systems equations of motion are reduced to regions of the localized nonlinearities. A few mode shapes of the
linearized reduced system are utilized as a basis to expand deformations of the localized nonlinearities in each harmonic.
These mode shapes are linearly independent, and their wavelengths are confined to the size of the reduced domain. The
condensation process converts the system equations of motion to a small set of nonlinear algebraic equations in each
harmonic.

Accuracy and computational cost of the method were discussed in various numerical studies, and were compared with
the HBM. Furthermore, this reduction approach was successfully used in identification of a system whose response was
measured in an experimental setup. The outcomes of these studies show potentials of the proposed method in reduction of
computational cost, while preserving the accuracy, identification and health monitoring of the systems conducted within
the scope of this paper. The reduction method can also be applied to the nonlinear systems along with other solution
methods such as AHBM and IHB and easily implemented in FEM codes.

References

[1] Z. Qu, Model Order Reduction Techniques: With Applications in Finite Element Analysis, First Edition, Springer-Verlag, London, 2004.
[2] G. Kerschen, M. Peeters, J.C. Golinval, A.F. Vakakis, Nonlinear normal modes, Part I: a useful framework for the structural dynamicist, Mechanical

Systems and Signal Processing 23 (2009) 170–194.
[3] M. Peeters, R Viguie, G Serandour, G Kerschen, J Golinval, Nonlinear normal modes, Part II: toward a practical computation using numerical

continuation techniques, Mechanical Systems and Signal Processing 23 (2009) 195–216.
[4] D. Jiang, C. Pierre, S. Shaw, The construction of non-linear normal modes for systems with internal resonance, International Journal of Non-Linear

Mechanics 40 (2005) 729–746.
[5] D. Jiang, C. Pierre, C., S. Shaw, Nonlinear normal modes for vibratory systems under harmonic excitation, Journal of Sound and Vibration, 288 (2005)

791–812.
[6] M. Legrand, D. Jiang, C. Pierre, S. Shaw, Nonlinear normal modes of a rotating shaft based on the invariant manifold method, International Journal of

Rotating Machinery 10 (2004) 319–335.
[7] E. Butcher, Clearance effects on bilinear normal mode frequencies, Journal of Sound and Vibration 224 (1999) 305–328.
[8] T.A. Doughty, P. Davies, A.K. Bajaj, A comparison of three techniques using steady state data to identify non-linear modal behavior of an externally

excited cantilever beam, Journal of Sound and Vibration 249 (2002) 785–813.

M. Mohammadali, H. Ahmadian / Journal of Sound and Vibration 333 (2014) 1754–1766 1765



Author's personal copy

[9] S.L. Lau, Y.K. Cheung, Amplitude incremental variational principle for nonlinear vibration of elastic systems, Journal of Applied Mechanics 48 (1981)
959–964.

[10] A. Grolet, F. Thouverez, On a new harmonic selection technique for harmonic balance method, Mechanical Systems and Signal Processing 30 (2012)
43–60.

[11] Y. Kim, S. Noah, Response and bifurcation analysis of a MDOF rotor system with a strong nonlinearity, Nonlinear Dynamics 2 (1991) 215–234.
[12] Y. Kim, S. Noah, Stability and bifurcation analysis of oscillators with piecewise-linear characteristics: a general approach, Journal of Applied Mechanics

58 (1991) 545–553.
[13] K. Hunt, F. Crossley, Coefficient of restitution interpreted as damping in vibroimpact, Journal of Applied Mechanics 42 (1975) 440.

M. Mohammadali, H. Ahmadian / Journal of Sound and Vibration 333 (2014) 1754–17661766


