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Most friction models are originally proposed to predict restoring forces in mechanical con-
tacts with constant normal load. In practice the contact interface kinematics may involve
normal motion in addition to the tangential displacements, leading to variation of the con-
tact normal load. This phenomenon is observed most strongly in contacts with high lateral
vibration amplitudes and is known as slap. The current study establishes a general friction
model to account for variation in the normal load and enables one to predict the behavior
of a contact more precisely. Iwan model (1966) [5] is a suitable candidate for contact inter-
face modeling and is able to represent the stick-micro/macro slip behavior involved in a
friction contact. This physical based model is employed in the current work and its physical
parameters are generalized to include the normal load variation effects. The model is char-
acterized by a slippage distribution density function and a linear stiffness at stick state.
Both these parameters, defined in presence of constant normal load in the original model,
are derived considering normal load variation leading to generalization of the contact
model. Conventional models with constant normal loads produce symmetric contact inter-
face hysteresis loops, but the developed generalized Iwan model is capable of generating
asymmetric hysteresis loops similar to those frequently seen in experiments. The general-
ized contact model is employed to simulate the measured behavior of a beam with fric-
tional support observed in an experimental test set-up. The contact slippage distribution
function is first identified in a constant normal load condition. Next in low levels of contact
preloads where variation of the normal load is significant, the identified distribution func-
tion in generalized form is employed to predict the experimental observations.

� 2014 Elsevier Inc. All rights reserved.
1. Introduction

Contact modeling is of considerable practical importance and occurs in many of mechanical systems. In recent decades, it
has been the focus of a number of studies. Investigating the dynamic behavior of mechanical systems often requires mod-
eling contact between two or more components of the system and using detailed finite element models is quite complicated
and almost impossible to implement which generally leads to inaccurate predictions. In general, an experimental approach
based on the identification of contact parameters appears to be more favorable because of its efficiency.
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Surface roughness has a key role on contact interface attributes and is responsible for nonlinear characteristics of the con-
tact, which can change the dynamic behavior of the system in different vibration amplitudes. The interface is in stick regime
at low vibration amplitudes, i.e. the system behaves linearly. As the response level increases, nonlinear mechanisms such as
slippage and micro impact start to develop. Research works on contact friction characteristics have a rich history. Den Hartog
[1] and Dowell [2] are the pioneers in this field followed by comprehensive investigations of friction phenomenon performed
by Ferri [3] and Berger [4]. A large number of models have been developed to simulate the friction effects on mechanical
systems. The Iwan model [5] is commonly used to model micro slip. It consists of networks of parallel Jenkin’s elements
allowing to model partial slip in the contact interface. There are other friction models offering smooth transition from stick
to macro slip. The Dahl model [6], the Valanis model [7], the Leuven model [8,9] and LuGre friction model [10] are some
examples. Gaul and Lenz [11] performed an experimental study to verify the capability of the Valanis model. Segalman
[12] inspected the validity of the Iwan model experimentally. Gaul and Nitsche [13] performed a comprehensive overview
on a range of constitutive models for contact interface mechanisms.

A contact model must be capable of taking into account the main nonlinear characteristics involved in the interface.
Investigations on the contact dynamics are performed in three fields; the first is studying the friction characteristics in con-
tact interface and only the tangential component of the contact force is considered and normal force assumed to be constant.
All the mentioned models [1–13] fall in the first group. The application of these models is limited to contacts with simple
geometry and negligible normal motion. In these models the coupling of normal motion and tangential vibration at the inter-
faces is ignored and the main outcome of this assumption is the symmetry of hysteresis loops. However in experimental
observations asymmetric hysteresis loops are frequently seen indicating two returning curves of the hysteresis loops are
not following the same trend. These different curves are the result of normal load variations. The second field of study is
inspecting the behavior of interface in normal direction and considers a frictionless contact. The application of this approach
is limited to collision of multi-body systems or contact with perfectly frictionless surfaces [14,15]. And the third field is
developing a general contact model considering the interaction of normal and tangential vibration at the interface. Consid-
ering impact and friction in contact interface, Han and Gilmore [16] employed static and kinetic coefficients of friction to
relate normal and tangential components of the contact force in their model. A general regularized contact model is devel-
oped by Gonthier et al. [17] which include normal compliance, energy dissipation and friction force using seven parameters.
However these two models ignore the effect of normal load on tangential stiffness. Gaul and Mayer [18] used finite element
approach to introduce an improved method to model contact interfaces. They adopted a nonlinear stiffness to model impact
force between the contact surfaces. Yang et al. [19] employed Jenkins element to investigate the effect of normal load on
hysteresis loop which only describes the full-slip or full-stick situation. In all published articles simplifications are used
and to the authors knowledge there is no proper micro slip model capable of taking into account the effect of normal load
variation to generate hysteresis loops observed in micro/macro slip region.

In this paper, a generalized Iwan model is developed. Original Iwan model is capable of reproducing the important contact
properties as they are now understood and many authors used this model to predict contact behavior in structures. However
the applications of Iwan model are restricted to cases with constant level of normal force. The physical based parametric
Iwan model enables one to derive their characteristics directly from experimental data, and this is another reason for
employing the model in this investigation. The model is generalized to include the effect of normal load variation in the con-
tact. This is achieved by special scaling of the distribution function and the shear stiffness variations.

The remainder of this paper is organized as follows: in Section 2 the generated force by Iwan model in presence of normal
load variation is obtained and properties of derived model are discussed. Sections 3 and 4 describe the mathematical mod-
eling of set-up and the test procedure respectively. In Section 5, Iwan distribution function in high preload condition is iden-
tified. To ensure the validation of identified parameters two different identifications approaches based on the energy
dissipation function and the force state mapping are employed. In Section 6 by reducing the preload, identified model is used
to regenerate the measured data in variable preload.

2. Generalized Iwan contact model

Iwan’s model composed of an infinite number of spring-slider arrays, shown in Fig. 1, known as Jenkins elements [5]. Jen-
kins element is an ideal elasto-plastic element, composed of a single discrete spring in series with a Coulomb damper with a
critical slipping force. The Iwan model represents hysteretic features and models transitions in stick–slip states, which ap-
pears in a contact. Applied tangential forces to the model, distributes between Jenkins elements and obligate sliders with low
critical slipping forces to begin to saturate and slip. This phenomenon known as micro-slip causes softening effect and en-
ergy dissipation at the contact interface. Increasing the applied force makes more sliders to slip, finally, at the ‘‘ultimate
force’’ all dampers would saturate and the full contact’s slip begins. Critical slipping force of frictional sliders f � is shown
by a distribution density function uðf �Þ, thus uðf �Þdf � is the fraction of sliders which their critical slipping force is between
f � and f � þ df �.

A typical Iwan model force–displacement hysteresis loop is shown in Fig. 2. The force required for deformation along the
path a–b, often referred to as ‘‘backbone curve’’, is:
Please
variab
fabðxÞ ¼
Z kx

0
f �uðf �Þdf � þ kx

Z 1

kx
uðf �Þdf �; ð1Þ
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Fig. 1. Iwan spring-slider model.

Fig. 2. A typical symmetrical hystresis loop.
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where k is the spring stiffness and x is the displacement. The ‘‘returning curve’’ b–c–d in Fig. 2 is defined as:
Please
variab
fbcdðx;AÞ ¼ �
Z kðA�xÞ

2

0
f �uðf �Þdf � þ

Z kA

kðA�xÞ
2

½kx� ðkA� f �Þ�uðf �Þdf � þ kx
Z 1

kA
uðf �Þdf �; ð2Þ
where A is the displacement amplitude and curve d–e–b, also shown in Fig. 2, is reflection of curve b–c–d. It’s known the
variation of normal load affects parameters of Iwan model. The two parameters of Iwan model are its distribution function,
uðf �Þ, and the restoring stiffness, k. First we consider the change of the distribution function on generated force.

2.1. Variation effects of distribution function

The sliders in Iwan model are coulomb type and their saturation force is proportional to the normal load. Assuming the
distribution function uðf �Þ is obtained at a reference normal load, NRef, it is extended to other normal loads, N, by introducing
a new parameter as:
aðtÞ ¼ NðtÞ
NRef

; ð3Þ
One may use the parameter a to dilate or compress the reference distribution function as:
ûðf �;aÞ ¼ uðf �=aÞ
a

: ð4Þ
This means the distribution function varies during one cycle and the slider with saturation force of f � at reference normal
load now may begin to slide at af �.

One needs to find how this variation during one cycle in Iwan model affects the contact restoring force. To answer this
question, a differential form is used to find the relation between the change in restoring force and the change of normalized
cite this article in press as: M. Rajaei, H. Ahmadian, Development of generalized Iwan model to simulate frictional contacts with
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load ratio ðdaÞ and displacement ðdxÞ. Let us suppose the normal load ratio is increasing and in each step of displacement, the
sliders with saturation force less than or equal to kx will slide. In constant preload, by increasing the displacement, the pop-
ulation of saturated Jenkins elements increases as well but situation is different in the presence of variable normal load. As
critical force of Jenkins elements are functions of preload, a rapid jump in preload may causes many or all Jenkins elements
go to stick state. A criterion for this situation is considering the modified distribution function of Eq. (4) and to determine the
change in critical force of the strongest saturated Jenkins element from reference state due to incremental change of contact
normal load. These parameters for an element starts to slide at displacement x is:
Please
variab
f �@x ¼ kx ¼ af �@x
Ref : ð5Þ
Further increasing the displacement results:
f �@xþdx ¼ kðxþ dxÞ ¼ ðaþ daÞf �@xþdx
Ref : ð6Þ
As the reference critical force of the strongest saturated element which goes to slip increases, the population of saturation
elements increases and vice versa. At da ¼ 0, one finds f �@xþdx

Ref > f �@x
Ref and in general cases:
da=a < dx=x ! f �@xþdx
Ref > f �@x

Ref : ð7Þ
Physical explanation of this relation is the relative change of restoring force in a particular element ðkdx=kxÞ should be
larger than relative change in shear strength of that element ðda=aÞ. Satisfaction of this condition increases the percentage
of saturated sliders, otherwise if this condition does not meet the sliders which were sliding at former state, go to sticking
mode at xþ dx. In this situation there would be an element with critical force kxsðxs < xÞ which satisfies da=dx ¼ a=xs. In
physical sense, the sliders with variable saturation force of equal or less than kxs remain in sliding mode and other sliders
would be at sticking region. The generated force by Jenkins element which is in first group is multiplied by da=a and added to
kdx in the second group:
df ¼ da
a

Z kxs

0
f �

uðf �=aÞ
a

df � þ kdx
Z 1

kxs

uðf �=aÞ
a

df �: ð8Þ
In this article we suppose the condition in Eq. (7) is always satisfied ðxs > xÞ. In other words normal load increases gradually.
In this situation the strongest slider at current step starts to slide at next step, has saturation force kðxþ dxÞ=ð1þ da=aÞ and
the differential force is:
df ¼ da
a

Z kx

0
f �

uðf �=aÞ
a

ulastðf �Þdf � þ
Z k xþdx

1þda=a

kx
ðf �ð1þ da=aÞ � kxÞuðf

�=aÞ
a

df � þ kdx
Z 1

k xþdx
1þda=a

uðf �=aÞ
a

df �

¼ da
a

Z kx

0
f �

uðf �=aÞ
a

df � þ kdx
Z 1

kx

uðf �=aÞ
a

df �: ð9Þ
Analytical integration of Eq. (9) by a change of variables leads to:
f ðxÞ ¼ a
Z kx=a

0
f �uðf �Þdf � þ kx

Z 1

kx=a
uðf �Þdf �: ð10Þ
On the other hand with decrease of normal load ratio, slipping sliders do not change their state but their slip force de-
clines by the ratio of da=a and sliders which change their state from stick to slip have a maximum saturation force of
kðxþ dxÞ=ð1þ da=aÞ. This leads to the same equation derived for increasing normal load and as a result Eq. (9) can be used
for any arbitrary loading pattern and there is no condition or limitation in decreasing pattern.

Eqs. (5)–(10) describe the initial loading pattern of the contact model and form the backbone curve. Next a relation for
returning curve is developed using the Masing rule. This rule states that the returning force is composed of the force at
returning point and double stretched backbone curve force:
f ðxÞ ¼ f ðx0Þ � 2
Z kðx�x0Þ=2

0
f �uðf �Þdf � � kðx� x0Þ

Z 1

kðx�x0Þ=2
uðf �Þdf �; ð11Þ
where subscript ()0 denotes the value of parameter in returning point. It is seen the saturation force in the integrals limits
equals kðx� x0Þ=2; as part of displacement ðxrÞ returns the springs to the free-state and after that, other part ðxtÞ pulls them
in opposite direction:
x� x0 ¼ xr þ xt : ð12Þ
If there was no change in normal load, these two parts would be equal ðxr ¼ xtÞ:
x� x0 ¼ 2xt ! xt ¼ ðx� x0Þ=2; ð13Þ
and limits of the integrals would be kxt : But when normal load varies one finds:
xt ¼
a
a0

xr ! xt ¼
x� x0

1þ a0=a
: ð14Þ
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The differential change of restoring force equals:
Please
variab
df ¼ da
a

Z kðx�x0Þ=1þa0=a

0
f �

uðf �=aÞ
a

df � þ kdx
Z 1

kðx�x0Þ=1þa0=a

uðf �=aÞ
a

df �: ð15Þ
Integrating both sides of Eq. (9) and considering the value of integration at initial point one arrives at:
f ðxÞ ¼ f ðx0Þ � ðaþ a0Þ
Z kðx�x0Þ=aþa0

0
f �uðf �Þdf � � kðx� x0Þ

Z 1

kðx�x0Þ=aþa0

uðf �Þdf �: ð16Þ
2.2. The effects of stiffness variations on contact restoring force

Considering the influence of stiffness variation, which is a function of normal load itself in Iwan restoring force model
ðk ¼ kðaÞÞ; one obtains the following condition:
jdx=xjP jdk=kj: ð17Þ
This condition ensures us the reverse sliding doesn’t happen. To understand this phenomenon, consider a saturated Jenkins
element, shown in Fig. 1, is pulled to the right direction and its slider is drawing in the same direction, now if the direction of
displacement changes (passing the returning point) and at the same time, stiffness has a sudden increase, slider slips in the
right direction to reduce the elongation of spring and will make the same critical force as before, this slippage is in the oppo-
site direction of the current displacement and is called reverse sliding.

As the stiffness is changed, the backbone curve remains in the original form and no modification is required. However to
determine the returning curve from Masing rule some difficulty arises. For instance when the stiffness of particular Jenkins
element reduces, the force changes depend on the position of the slider with respect to its reference point. The Masing’s form
of the element is:
f ðxÞ ¼ f ðx0Þ � b1

Z b2x

0
f �uðf �Þdf � � kðx� x0Þ

Z 1

b2x
uðf �Þdf �; ð18Þ
where b1 and b2 are unknown. To obtain these parameters we use the original relation for returning curve as:
f ðxÞ ¼ �
Z kðA�xÞ

2

0
f �uðf �Þdf � þ k

Z kA

kðA�xÞ
2

x� ðA� f �=kÞ½ �uðf �Þdf � þ kx
Z 1

kA
uðf �Þdf �; ð19Þ
The first integral defines parts of forces generated by saturated elements, second integral represent forces of elements
saturated in initial loading and now are at x in elastic mode and finally the last integral refers to the elements never be sat-
urated. The limits of integrals are function of k which varies in a loading cycle. These limits are defined using the properties
of the element at the returning point as follows. In each saturated Jenkins element with constant normal load the elongation
of spring is constant ðxc ¼ f �=kÞ: As normal load varies, this elongation changes over the loading path and at the returning
point it would be f �=k0: We consider the displacement from returning point as sum of two parts defined in Eq. (12):
f � ¼ k0xr ¼ kxt ! xt ¼
x� x0

1þ k=k0
: ð20Þ
Eq. (20) specifies the upper limit of the first integral and lower limit of second integral as:
kxt ¼
kk0ðx� x0Þ

kþ k0
: ð21Þ
The upper limit of second integral is k0A as long as it is less than kxt : Moreover the integrant in second integral must be
modified from A� f �=k, the elongation of springs at returning point, to A� f �=k0. Applying these modifications, the returning
curve relation defined in Eq. (19) is rewritten as:
f ðxÞ ¼ �
Z kk0 ðA�xÞ

kþk0

0
f �uðf �Þdf � þ k

Z k0A

kk0 ðA�xÞ
kþk0

½x� ðA� f �=k0Þ�uðf �Þdf � þ kx
Z 1

k0A
uðf �Þdf �: ð22Þ
Direct employment of Eq. (22) faces two difficulties:

(I) One must insure the inequality kk0ðA�xÞ
kþk0

6 k0A is satisfied,
(II) The amplitude A is meaningful in steady state response but not applicable in transient response.

Therefore it is more convenient to calculate the restoring force from Masing rule, and Eq. (22) may be defined in Masing
form as:
f ðxÞ ¼ k
k0

f ðx0Þ � 1þ k
k0

� �Z kk0
kþk0
ðx�x0Þ

0
f �uðf �Þdf � � kðx� x0Þ

Z 1

kk0
kþk0
ðx�x0Þ

uðf �Þdf �: ð23Þ
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Comparing Eqs. (23) and (18), it becomes clear why the original form of Masing rule could not be used and we call the above
form the adjusted Masing rule.

2.3. Combined effects of the stiffness and distribution function variations

The final step is to combine these results together and consider both effects of normal load on the distribution function
and the stiffness. Rewriting Eq. (16) in original Iwan form:
Fig. 3.
(right).

Please
variab
f ðxÞ ¼ �
Z kðA�xÞ

1þa0=a

0
f �

uðf �=aÞ
a

df � þ k
Z a

a0
kA

kðA�xÞ
1þa0=a

x� A� a0f �

ka

� �� �
uðf �=aÞ

a
df � þ kx

Z 1

a
a0

kA

uðf �=aÞ
a

df �; ð24Þ
and combining it with Eq. (22), leads to:
f ðxÞ ¼ �
Z kðA�xÞ

1þ
ka0
k0a

0
f �

uðf �=aÞ
a

df � þ k
Z a

a0
k0A

kðA�xÞ

1þ
ka0
k0a

x� A� a0f �

k0a

� �� �
uðf �=aÞ

a
df � þ kx

Z 1

a
a0

k0A

uðf �=aÞ
a

df �: ð25Þ
Then the final form of adjusted Masing rule can be written as:
f ðxÞ ¼ k
k0

f ðx0Þ � aþ k
k0

a0

� �Z kk0
ka0þk0aðx�x0Þ

0
f �uðf �Þdf � � kðx� x0Þ

Z 1

kk0
ka0þk0aðx�x0Þ

uðf �Þdf �: ð26Þ
It’s worth mentioning based onEq. (7) limiting criterion for this relation is:
dx
x

����
����P da

a
� dk

k

����
����: ð27Þ
However for small change of normal load, provided the variation of stiffness is a linear function of normal load i.e.
aðtÞ ¼ bkðtÞ where b ¼ constant; results jda=a� dk=kj ¼ 0 and criterion (27) is automatically satisfied.

A numerical simulation is provided to show the variation of normal load effects on the hysteresis loops in the contact
interferes. An Iwan model with a uniform distribution function spans from 0. to 5. i.e. uðf �Þ ¼ 0:2 1� Heavisideðf � � 5Þð Þ is
used to model the contact interface. The model is excited such that it has a cyclic motion in non-dimensional form as
3 sinð2ptÞ: The restoring force induced in Iwan model versus displacement is shown in Fig. 3 for two distinct set of variables
k ¼ a ¼ 1þ 0:5 sinð2ptÞ and k ¼ a ¼ 1þ 0:5 cosð2ptÞ: Fig. 3 shows how the variation of normal load affects the hysteresis
loops in the contact interfere.
3. Modeling a beam with frictional contact support

In this paper, the friction force between two contacting surfaces is investigated when the contact normal force is varied
considerably. In order to study this situation, the dynamic behavior of a clamped-frictionally supported beam shown in Fig. 4
is inspected. A normal preload is provided to the contact point by suspended mass blocks. In the presence of a large preload,
the lateral movement of the beam support is prevented. Furthermore the variation of normal force due to vibration of the
beam is negligible compared to the contact preload and one may suppose that the contact normal force is constant. In
the present study first the preload is set large enough and the Iwan parameters in presence of constant preload are identified.
Next, the preload is reduced such that its variation in the contact cannot be disregarded. In this situation the contact normal
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force is not known and varies periodically due to harmonic external excitations. The contact normal force variations needs to
be considered in the modeling of the system and must be identified to predict the tangential contact force.

Euler–Bernoulli beam theory is employed to model the dynamic response of the beam. The beam has a modulus of elas-
ticity of E, cross sectional moment of inertia of I, mass density of q, cross sectional area of �A, and length of L. In the model
axial inertial effects of beam are neglected as the dynamic behavior is considered in a frequency range much lower than its
first axial mode. Therefore, in axial direction the beam is regarded as a spring of stiffness kb which is equal to E�A=L. The fric-
tional support is composed of a pin welded to the right end of the beam and is allowed to slip on a steel block. The pin has a
radius of r, mass of mp, mass moment of inertia of Jp. Applying a normal force to the rod provides a preload to the contact
interface. This is achieved, as shown in Fig. 5, by suspended mass blocks attached to the rod via a string. The beam is excited
by concentrated force F(t) applied at distance S from clamped end.

The beam equation of motion is:
Please
variab
EI
@4w
@x4 � FnlðtÞ

@2w
@x2 þ q�A

@2w
@t2 ¼ FðtÞdðx� SÞ � rFnlðtÞd0ðx� LÞ: ð28Þ
where Fnl(t) is the non-linear friction force at the contact. The normal stiffness of the contact interface is proportional to the
contact preload. It is assumed, within the range of preload variations in the current study, this relation is linear and is rep-
resented with stiffness kn located between two contact surfaces. The beam is clamped at one side and loaded with shear force
at the other side. The shear force at beam frictional support can now be established using three terms, a static preload equal
to total weight of suspended masses, preload variation caused by relative lateral movement of surfaces and inertia force of
block masses,
EI
@3wðL; tÞ
@x3 ¼ knwðL; tÞ þ nbm

@2wðL; tÞ
@t2 � g

 !
; ð29Þ
where nb is the number of blocks and m = 7 kg is the mass of each of them.
One may solve Eq. (28) with the given boundary conditions to obtain the non-linear friction force Fnl(t). The friction force

and the shear deformation at the contact interface are needed to define hysteresis loops of the contact interface. The contact
shear deformation is governed by three different effects included in the right hand side of the following identity:
uðtÞ ¼ �1
2

Z L

0

@wðx; tÞ
@x

� �2

dxþ r
@wðL; tÞ
@x

þ FnlðtÞL
�AE

: ð30Þ
Fig. 5. Test set-up.
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The first effect is related to shortening of the beam due to its lateral bending motion and is described by the first term on the
right hand side of Eq. (30). The second term is the relative motion due to rotation of the beam end, and last term indicates the
axial deformation of beam due to friction force at the contact interface.

To reduce the order of the nonlinear model of Eq. (28), the Galerkin method is employed. The friction in contact is dis-
placement dependent phenomenon and corresponding base linear system mode shapes are function of amplitude. The non-
linear response of the beam is expanded using the mode shapes of the base linear system as:
Please
variab
wðx; tÞ ¼
Xn

i¼1

~/iðx; aÞqiðtÞ; ð31Þ
where a is the amplitude of response at direct measurement point. Employing this expansion series in Eq. (28) and using
their orthogonally properties, the discretized nonlinear equations of beam motion are:
€qiðtÞ þx2
i ðaÞqiðtÞ � FðtÞ~/iðS; aÞ � khðaÞ

Xn

r¼1

qrðtÞ
@~/rðL; aÞ

@x

 !
@~/iðL; aÞ

@x

¼ r
d~/iðL; aÞ

dx
�
Xn

r¼1

qrðtÞ
Z L

0

@~/rðx; aÞ
@x

@~/iðx; aÞ
@x

dx

 !
FnlðtÞ � ~/iðL; aÞðknwðL; tÞ � nbmgÞ; i ¼ 1;2; . . . ;n: ð32Þ
where khðaÞ is the support equivalent flexural stiffness at different vibration levels. In the following section, experiments on
the structure shown in Fig. 4 are performed. The observed behavior of test structure is used to determine the mode shapes of
the base linear system, the frictional and normal contact forces.
4. Experimental case study

The experimental case is a steel beam clamped at one end and fixed at other end with frictionally support as shown in
Fig. 5. The dimension of beam are L = 600 mm (length), b = 40 mm (width) and h = 5 mm (thickness). The rod attached to the
end of beam end is steel and it has a radius of r = 5 mm and has the length the same as the beam width. The weight of sus-
pended mass block provides the desired value for preload and this allows for the application of arbitrary preloads on the
contact interface. A B&K4200 mini shaker is used to excite the beam through a stinger at distance S = 550 mm from the
clamped side. A B&K8200 force transducer is located between the beam and stinger to measure the excitations. Three accel-
erometers AJB 120 are mounted on structure to measure the lateral acceleration and placed at distance x1 = 550 mm,
x2 = 300 mm and x3 = 50 mm from clamped side. A laser Doppler OMETRON vh-1000-d is employed to measure axial defor-
mation of beam at frictional end.

Two parameters of Iwan model, namely the stiffness of Jenkins elements, i.e. the stiffness of contact at stick state, and the
distribution function must be identified. To identify the stiffness at the stick state, the beam is excited with a low amplitude
random signal and frequency response function (FRF) is measured. The FRFs of the beam for two different preloads is shown
in Fig. 6. In the mathematical model, the stiffness at contact is tuned in such a way to regenerate the same resonance
frequencies.

The identification of distribution function is more complicated. There are a few approaches for extracting this function.
Song et al. [20] and Shiryayaev et al. [21] applied neural network method to identify the parameter of a uniform distribution
function from time domain response. Segalman [22,23] proposed the distribution function with four unknown parameters.
Ahmadian et al. [24] applied the force state mapping method to identify the hysteresis loop on contact interfere which could
be used to identify the Iwan parameters. It is shown in the previous work of the authors that the distribution function could
be identified by dissipation energy pattern in different displacement amplitude [25].
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Fig. 6. Linear frequency response curve for direct measurement.
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All of these methods are restricted to the cases with constant preload. To provide this condition, we used three mass
blocks (21 kg) as the preload and two later approaches is employed at the same time to validate the identified distribution
function.

5. Distribution function identification in a high preload

In test strategies of nonlinear systems it is common to excite the structure near one of its resonances using a single har-
monic force. This practice leads to a dominant single mode response in systems without modal interaction and the contri-
bution of other modes is usually marginal.

The measured force and acceleration signals are used to reconstruct the nonlinear restoring forces and shear deformation
in the contact interface. The first part of this section deals with determination of the shape functions used in Galerkin pro-
jection. Then the measured accelerations and identified shape functions are employed to calculate the generalized coordi-
nates using Eq. (31).

The response of the structure contains one dominant harmonics close to the first natural frequencies of the system. There-
fore, the mode shapes of the base linear system are good approximations for series expansion base functions. As mentioned
in previous section, when the structure behaves linearly the contact interface is modeled by tangential spring. Eliminating
nonlinear parts of Eq. (28) and replacing the last term with kh leads to a linear equation of motion. This stiffness identified
from test result and selected in such a way to regenerate resonance frequencies observed in the test.

It should be noted in Eq. (28) that the effect of accelerometers is not introduced for simple understanding but they are
considered in the model. Using the section at place of each accelerometer, the beam divides into four parts and compatibility
requirements at the interface of each two parts are added to the equations of motion. It is assumed that the displacements
and slopes at the sections don’t change but the shear forces and bending moments alter due to mass and inertia of the accel-
erometers and the force transducer. Now, the linear base system is completely described. Having the linear mode shape, the
generalized coordinate vector can be calculated using the measured accelerations at 3 points:
Please
variab
€qðtÞ ¼
€q1ðtÞ
€q2ðtÞ
€q3ðtÞ

8><
>:

9>=
>; ¼

~/1ðx1; aÞ; ~/2ðx1; aÞ; ~/3ðx1; aÞ
~/1ðx2; aÞ; ~/2ðx2; aÞ; ~/3ðx2; aÞ
~/1ðx3; aÞ; ~/2ðx3; aÞ; ~/3ðx3; aÞ

2
64

3
75
�1 €wðx1; tÞ

€wðx2; tÞ
€wðx3; tÞ

8><
>:

9>=
>; ¼ U�1 €w: ð33Þ
Next we turn our attention to the experimental results. The mode shapes of the base linear system are inherently good
approximation. Therefore, we donot expect a large number of modes contributing to construct the desired shape functions
and the number of mode shapes in Eq. (31) is set to be three. In other words, three linear mode shapes used to identify one
shape functions. The corresponding generalized coordinates q(t) of this three modes is shown in Fig. 7. As it is seen in the
third linear mode has a marginal contribution in the final shape functions that ensures that there is no need for more modes
in construction of the desired shape functions.

The normal stiffness kn is the last parameter to be evaluated. The response of structure is insensitive to this parameter so
it cannot be calculated by any identification method accurately. Johnson [26] showed that force–displacement for an infinite
cylinder on a plane in normal direction would be:
d ¼ P
1� m2

pE
ð2 lnð4r=a1Þ � 1Þ; a2

1 ¼ 4Pr=pE�; ð34Þ
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where P is the compressive load per unit, E and E� are elasticity modulus and elasticity composite modulus, respectively, r is
the radius of cylinder and v is the poison ratio. This relation plotted in Fig. 8 for dimension of the cylindrical rod which at-
tached to the beam end. As it is shown a linear spring gives good estimate for this relation.

However infinite length of cylinder and frictionless of surfaces are two assumptions in Eq. (34) and calculated value for
stiffness are rough but we use it in our model. That is because as mentioned above structure response is insensitive to this
parameter which means EIw00ðL; tÞ or beam support shear force remains invariant. It is shown in Eq. (29) shear force at beam
end is summation of three terms which the effect of inertia force of mass blocks is negligible, this leads to the conclusion that
the generated force by variation of normal spring remains the same and if spring stiffness decreases a few percent, the dis-
placement amplitude increases in such way to make up this change in generated force. In other words when the normal stiff-
ness exceeds from the certain value, the boundary condition at beam end becomes close to the classical simply support
boundary condition (rotation resistance due to friction exists anyway) and changing stiffness has no effect on support
reactions.

Another way to identify distribution function is by using contact dissipation energy [25]. It is shown that each distribu-
tion function causes a unique pattern of dissipation energy in different amplitude and the relation is as follows:
Fig. 8

Please
variab
d2D

dA2 ¼ 4Ak2uðkAÞ; ð35Þ
where D is the dissipation energy. Increasing the number of recorded points increases the accuracy of identified function.
This approach is less sensitive to noise than force state mapping method. Because in the later one, the nonlinear force is dif-
ferentiation of two bigger terms (stiffness and inertia force) and noisy data leads to erroneous result.

In this paper, the single sinusoidal excitation is applied to beam at 80 different amplitudes to generate acceleration with
amplitude from 40 mg to 6 g at direct point of measurement. In each level, the frequency of excitation is set to the resonance
frequency of structure on that level (with overall error 0.1 Hz). This frequency decreases from 57.3 Hz at 40 mg to 54.8 Hz at
6 g. By having contact displacement and contact dissipation energy and using Eq. (35), the distribution function could be
extracted.

In Fig. 9 the distribution function identified by dissipation energy method is shown and hysteresis loop in contact for
three different amplitude levels by both methods is shown in Fig. 10. These diagrams have a good agreement at amplitude
levels up to 3 g after that normal load variation makes diagram to deviate from each other. Therefore if we seek for a reliable
distribution function, we could only take some part of this function which normal load effects doesnot contaminate it. In 3 g
amplitude level a critical force of the strongest Jenkins element would be:
f � ¼ Ajoint � k ¼ 18� 10�6 � 11:02� 10þ6 ’ 200 N: ð36Þ
As it is shown, the deviation between two diagram starts at hysteresis loop end in 3 g level so we could conclude that the
distribution function are reliable and almost exact until 200 N on critical force axis.

In dissipation energy method The distribution function extracted on constant normal load assumption because the effect
of this variation on dissipation energy is not considered therefore the hysteresis loops are plotted under this condition and
variation of normal load neglected but it’s worth to mention, if we accept the identified function as an exact one in whole
span and taking into the account the influence of normal on generated hysteresis loop, it could be seen that a better agree-
ment between two methods would achieve (Fig. 11) although some deviations remain but it can capture some features.

6. Application of generalized Iwan model

In this section the preload of beam under the test reduces to one mass block and the identified distribution function is
applied to regenerate the time domain response of structure in high variation of normal load. The high variation of preload
. Force versus displacement in normal direction. r ¼ 5 mm; E ¼ 210 Mpa; v ¼ 0:3; L ¼ 0:05 m The slope of fitted line is kn ¼ 2:72� 109 kN=mm.
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causes large change in tangential (or equivalent flexural) stiffness in one period of movement so the a few mode shape of
base linear system could not reveal the response of structure and it makes the both force state mapping and dissipation en-
ergy methods inapplicable. But the physical parameters of Iwan model permit to employ the identified distribution function
to evaluate the response.

First in identified distribution function we divide and multiply the horizontal and vertical axis, respectively by 3 to obtain
new function in one mass block preload, next the effect of normal load on tangential stiffness should be evaluated. The fre-
quency response of the beam is obtained in three different preloads. The first resonance frequencies and identified tangential
stiffness’s is shown in Table 1. Fig. 12 shows the variation of this stiffness versus the normalized preload. This parameter
variation in one mass block case, is about 50% so to get smooth change, the second degree polynomial is fitted on equilibrium
and only two first point of measurement.
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Table 1
The effect of preload on the contact tangential stiffness.

Number of mass blocks One mass block Two mass blocks Three mass blocks

Fundamental frequency 55.3 Hz 56.52 Hz 57.3 Hz
Tangential stiffness 4:90� 106 N=m 8:71� 106 N=m 11:02� 106 N=m
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Fig. 12. The identified tangential stiffness for three points (circles) and fitted curve to estimate curve between two first points (solid line).
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The generated hysteresis loop is shown in Fig. 13 and to validate the model, the time domain response in direct point of
measurement shown in Fig. 14.

By increasing the amplitude, the test result and model prediction diverge from each other. There are two main causes for
it, first, the normal spring which is used to model normal load variation is acceptable in limited band and increasing the
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amplitude activates the phenomenon like micro slap and its strong nonlinear effects influence on beam response. Second
cause is the domain of reliability of distribution function. As we mentioned the original identified function is reliable until
18� 10�6m for tangential displacement amplitude which leads to Jenkins elements with critical force up to 200 N. When the
preload reduces, the critical force of this Jenkins elements decrease to one-third of original value but the stiffness of tangen-
tial spring reduces too thus we could conclude the acceptable amplitude for contact displacement would be about:
Please
variab
Aone block
joint ¼ Athree blocks

joint kthree blocks=3kone block: ð37Þ
In our experiment, the reliable amplitude in one mass block preload is about 0.76 of amplitude in three mass blocks.

7. Conclusion

Iwan model is a commonly employed mathematical representation of contact interface behavior. This model is general-
ized for cases where the variation of normal load has a significant effect on restoring force of contact. The generalized model
is capable of producing hysteresis loops observed in experimental data. The generalized model is used to predict the re-
sponse of a beam with frictional support. The main parameter of Iwan, the distribution function, is identified in constant
preload then the other parameter, the shear stiffness, is identified experimentally as a function of the preload. These two
parameters are employed to regenerate the structure response in variable preload state. Based on observed results, variable
preload affects the obtained hysteresis loops, which in turn is responsible for nonlinear behaviors of the beam.
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