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a b s t r a c t

A novel analytical approach for prediction of chatter in milling process is presented. Existing approaches

use lumped-parameter models to define the dynamics of tools/workpieces. In this paper a continuous

beam model is employed for prediction of milling operations dynamics. The tool boundary conditions

are elastic support at the tool/holder/spindle interface and free support at the other end. Employing the

continuous model eliminates the need for tool tip frequency response function (FRF) measurements in

tool-tuning practice, especially in micro-milling, where FRF measurement is practically very difficult.

Tool/holder/spindle interface parameters, once identified, can be used for other tool lengths. The impact

hammer test is used to identify stiffness and damping parameters of the tool/holder/spindle interface.

Using the new analytical approach and picking single-frequency solution (SFS), stability lobes are

obtained for a slotting operation. The resulting lobes are compared to those obtained by the well-proven

lumped-parameter model. In addition to a good general agreement between the two approaches, the

continuous model prediction is more conservative for critical depth of cut, which is attributed to its

ability to consider all participating modes in the response and so represents a more accurate

representation of the system.

& 2009 Published by Elsevier Ltd.
1. Introduction

Machine tool chatter is the self-excited relative oscillation between
the cutting tool and the workpiece that develops at large metal
removal rates. If the closed-loop machining system, which comprises
the machine tool structure’s dynamics coupled to the cutting process
dynamics, dissipates only a portion of the energy provided by the
cutting force, then the amplitude of the tool’s motion with respect to
the workpiece increases to unacceptable levels. Chatter affects
adversely both surface finish and dimensional accuracy of the
workpiece. Furthermore, it increases tool wear and may cause tool
fracture and damage to the machine tool itself. In order to avoid its
occurrence conservative metal removal rates are used, thus limiting
the efficiency of the metal cutting operations. In order to improve
process efficiency, it is vital to identify chatter-free cutting conditions
without compromising on metal removal rates. Predictive models are
important to industry because in their absence stable cutting
conditions are found only through trial and error, which is a costly
and time-consuming process [1,2].

Most of the works done in modeling and simulation of chatter
phenomenon use a discrete model or the so-called lumped-

parameter model for representing spindle/holder/tool dynamics at
the tool tip [3–15]. The basic idea in a lumped model is the fact
that in regenerative chatter mechanism the dynamic behavior of
Elsevier Ltd.
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the tool tip plays a dominant role. Hence, spindle/holder/tool
assembly can be represented by modal mass, modal stiffness, and
modal damping at each of the modes in feed and perpendicular
directions. These parameters are extracted from frequency
response function (FRF) measurements in each of the two
mutually perpendicular directions.

Long, slender end mills are often used in automotive, biomedical,
and aerospace industries for macro- [16] or micro-machining [17,18]
of components with thin walls, deep pockets, and small internal
corner radii. Because of the high flexibility of the tool, most of the
deflections encountered during machining are concentrated in the
tool. Hence, the spindle/holder assembly can be assumed to be rigid.
In the presented continuous model the tool is represented by an
Euler–Bernoulli beam and tool/tool holder interface is modeled using
a set of translational spring, torsional spring, and hysteretic dampers.

Schmitz [19], Schmitz et al. [20–22], Budak et al. [23], Namazi
et al. [24], and Filiz et al. [25] pointed out that changes in tool
length, i.e. tool tuning, shift the location of stability lobes. Thus,
tool length can be used as an optimization parameter to move a
highly stable region to the top spindle speed of the machine.
Milling simulation requires knowledge of the system dynamics
reflected at the tool point. In general, a separate set of tool-point
frequency response function measurements must be performed
for each tool/holder/spindle combination on a particular machin-
ing centre. These measurements can be time consuming, require a
trained technician, and lead to costly machine downtime. Besides
the foregoing inconveniences, FRF measurement at micro-tool’s
tip is practically very difficult due to the miniature and slender
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nature of the latter, which makes it fragile [18]. The continuous
model introduced here eliminates this requirement since the tool/
holder interface parameters remain unchanged when only tool
length is altered. Once the tool/holder/spindle interface para-
meters are identified, the length of the tool can be tuned in the
model to obtain the maximum material removal rate at a specified
spindle speed without any need for further FRF measurement at
the tool tip.

The rest of this paper is organized as follows. In Section 2, the
continuous model of the dynamic milling system is presented. The
stability analysis of the dynamic milling process is performed in
Section 3 and based on the developed stability procedure the
relations between the chatter frequency, depth of cut, and spindle
speed are derived. In Section 4, tool/tool holder/spindle interface
parameters of the continuous model are identified using the least-
squares optimization method and the stability lobes predicted
using the continuous beam model on elastic support are
presented in Section 5.
2. Dynamic modeling of milling

The continuous model, shown in Fig. 1, has a flexible support
representing tool/tool holder/spindle interface at one end, and the
cutting force is applied on the other end. The governing equations of
motion for the beam based on the Euler–Bernoulli beam theory are

EI
@4ŵ1

@x̂
4
þm

@2ŵ1

@t̂
2
¼ 0 ð1Þ

EI
@4ŵ2

@x̂
4
þm

@2ŵ2

@t̂
2
¼ 0 ð2Þ

The beam parameters are defined as follows: m is the mass per unit
length, E the Young’s modulus, I the beam cross-section moment of
inertia, ŵ1 and ŵ2 are the transverse displacements in feed and
perpendicular to feed directions, respectively, x̂ is the tool axial
distance from its support, and t̂ the time variable.

Boundary conditions of the beam in continuous model in feed and
perpendicular directions with the sign convention of positive
Fig. 1. Continuous model of tool and tool/holder interface.
directions for shear and moment are

EI
@3ŵ1

@x̂
3
ð0; t̂Þ þ ð1þ iZ11Þk11ŵ1ð0; t̂Þ ¼ 0; �EI

@3ŵ1

@x̂
3
ðL; t̂Þ ¼ F1

EI
@2ŵ1

@x̂
2
ð0; t̂Þ � ð1þ iZ10Þk10

@ŵ1

@x̂
ð0; t̂Þ ¼ 0;

@2ŵ1

@x̂
2
ðL; t̂Þ ¼ 0

ð3Þ

EI
@3ŵ2

@x̂
3
ð0; t̂Þ þ ð1þ iZ21Þk21ŵ2ð0; t̂Þ ¼ 0; �EI

@3ŵ2

@x̂
3
ðL; t̂Þ ¼ F2

EI
@2ŵ2

@x̂
2
ð0; t̂Þ � ð1þ iZ20Þk20

@ŵ2

@x̂
ð0; t̂Þ ¼ 0;

@2ŵ2

@x̂
2
ðL; t̂Þ ¼ 0

ð4Þ

Here k represents the spring constant and Z is the hysteretic damping
factor. Left subscripts 1 and 2 represent feed and perpendicular
directions, respectively. Right subscript 0 represents torsional spring
constant or damping factor and right subscript 1 is translational
spring constant or damping factor. L is the beam length. F1 and F2 are
the dynamic milling forces in feed and perpendicular directions,
respectively, and are calculated from the following equations:

F1 ¼
XM
j¼1

�L0fcosðfjÞ þ r sinðfjÞgfŵ1ðL; t̂ÞsinðfjÞ

þŵ2ðL; t̂ÞcosðfjÞggðfjÞ ð5Þ

F2 ¼
XM
j¼1

�L0f�sinðfjÞ þ r cosðfjÞgfŵ1ðL; t̂ÞsinðfjÞ

þŵ2ðL; t̂ÞcosðfjÞggðfjÞ ð6Þ

L0 ¼ �bKsð1� e�iotÞ ð7Þ

In the above equations b is the chip width, o the frequency of tool
vibration, t the cutter tooth-passing period, M the number of teeth, Ks

the material special cutting force, r the ratio between tangential and
radial cutting forces, and g(fj) is a unit pulse function that determines
whether the tooth is in or out of cut, i.e.

gðfjÞ ¼
1; feofjofa

0 otherwise
; j ¼ 1;2; . . . ;M

�
ð8Þ

where fj is the angle of the jth tooth with respect to the
perpendicular to the feed direction; fe and fa are the entry and
exit angles of the cut, respectively. Rewriting Eqs. (5) and (6) in matrix
form one arrives at

F1

F2

( )
¼ �L0

m11 m12

m21 m22

" #
ŵ1ðL; t̂Þ

ŵ2ðL; t̂Þ

( )
ð9Þ

where m11, m12, m21, and m22 are as follows:

m11 ¼
XM
j¼1

fcosðfjÞ þ r sinðfjÞgsinðfjÞgðfjÞ

m12 ¼
XM
j¼1

fcosðfjÞ þ r sinðfjÞgcosðfjÞgðfjÞ

m21 ¼
XM
j¼1

f�sinðfjÞ þ r cosðfjÞgsinðfjÞgðfjÞ

m22 ¼
XM
j¼1

f�sinðfjÞ þ r cosðfjÞgcosðfjÞgðfjÞ

ð10Þ

In the development of the dynamic model it is assumed that
the milling operation is slotting with two-flute end mill. This
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assumption is made to simplify the cutting force formulation and
may be removed by including more terms into the cutting force
formulation in Eq. (10) for other applications. The relation
between spindle speed (n) and tooth-passing period (t) for two-
flute end mill is as follows:

n½RPM� ¼
30

t½s�
ð11Þ

As the tool is rotating fj is a continuous function in time
domain, i.e.

f1 ¼
2np
60

t̂ ¼ p t̂

t

 !
ð12Þ

f2 ¼
2np
60

t̂ � p ¼ p t̂

t

 !
� 1

( )
ð13Þ

Substituting Eqs. (12) and (13) into Eq. (10) and considering the
fact that at least one tooth of the cutter is in the cut each time
during cutting, i.e. g(py)+g(py�p) ¼ 1, one arrives at

m11 ¼ fcosðpyÞ þ r sinðpyÞgsinðpyÞ;
m21 ¼ f�sinðpyÞ þ r cosðpyÞgsinðpyÞ
m12 ¼ fcosðpyÞ þ r sinðpyÞgcosðpyÞ;
m22 ¼ f�sinðpyÞ þ r cosðpyÞgcosðpyÞ ð14Þ

where y ¼ t̂=t. These are periodic functions of y and, based on
what method is picked in stability analysis, they are approximated
in different ways. Stability analysis methods fall into two broad
groups of time [5–7,9–14] and frequency [3,4] domain ap-
proaches. In the frequency domain approach, periodic functions
in Eq. (14) are expanded in a Fourier series and, based on which
terms are retained for approximation, multi-frequency solution
(MFS) and single-frequency solution (SFS) are sought. In the SFS
method, which is applied in this research, only the zero-order
term is kept. It is a very practical approach since it gives a closed-
form expression for stability boundary. However, this method
loses accuracy as the radial immersion decreases and time domain
methods like two-stage map [5], temporal FEA [6], or semi-
discretization [9] should be implemented to be able to predict
both periodic and quasi-periodic chatter. Analyzing stability in the
continuous model formulation using the foregoing time domain
approaches is under study and does not decrease the importance
of continuous models, which eliminate the need for repeated tool
tip FRF measurements in tool tuning especially for micro-
machining [18]. The zero-order terms or average values of m12,
m12, m21, and m22 in their Fourier series expansions are as follows:

m11 ¼

Z 1

0
m11 dy; m12 ¼

Z 1

0
m12 dy; m21 ¼

Z 1

0
m21 dy;

m22 ¼

Z 1

0
m22 dy ð15Þ

These average values are used in Eq. (9) [4]. The next step is to
convert the variables of the equations of motion and boundary
conditions to a non-dimensional form to simplify the solution
procedure. The non-dimensional variables are obtained according
to the following scheme:

x ¼
x̂

L
; w1 ¼

ŵ1

L
; w2 ¼

ŵ2

L
; t ¼ t̂

ffiffiffiffiffiffiffiffiffi
EI

mL4

r
ð16Þ

Using these variables, one may rewrite Eqs. (1) and (2) as

wiv
1 þ €w1 ¼ 0 ð17Þ

wiv
2 þ €w2 ¼ 0 ð18Þ
where ‘iv’ and dots denote spatial and time derivatives, respec-
tively. The boundary conditions are also transformed to the
following:

w
000

1 ð0; tÞ þ ð1þ iZ11Þa11w1ð0; tÞ ¼ 0;

w1
00ð0; tÞ � ð1þ iZ10Þa10w1

0ð0; tÞ ¼ 0

w
000

1 ð1; tÞ �L1fm11w1ð1; tÞ þ m12w2ð1; tÞg ¼ 0; w1
00ð1; tÞ ¼ 0 ð19Þ

w
000

2 ð0; tÞ þ ð1þ iZ21Þa21w2ð0; tÞ ¼ 0;

w2
00ð0; tÞ � ð1þ iZ20Þa20w2

0ð0; tÞ ¼ 0

w
000

2 ð1; tÞ �L1fm21w1ð1; tÞ þ m22w2ð1; tÞg ¼ 0; w2
00ð1; tÞ ¼ 0 ð20Þ

where

a10 ¼
k10L

EI
; a11 ¼

k11L3

EI
; a20 ¼

k20L

EI
; a21 ¼

k21L3

EI
;

L1 ¼
L0L3

EI
ð21Þ

The solution of (17) and (18) satisfying the boundary conditions
defined in (19) and (20) represents the dynamic behavior of the
tool during milling operations. The following section considers the
dynamic behavior of the tool at the chatter frequency.
3. Stability analysis of dynamic milling

According to the linear chatter theory the amplitude of
vibration neither increases nor decreases at the limit of stability.
Based on this observation, at the stability boundary an un-
damped solution for the boundary value problem defined in (17)
and (18) of the following form is assumed:

w1ðx; tÞ ¼ jðxÞeiot ð22Þ

w2ðx; tÞ ¼ cðxÞeiot ð23Þ

In the assumed solutions the chatter frequency, o, is a real-value
function. Substituting (22) and (23) in (17) and (18), respectively,
and separating the variables, one arrives at the following ordinary
differential equations:

jiv � l4j ¼ 0 ð24Þ

civ
� l4c ¼ 0 ð25Þ

where l4
¼ o2. The solutions of (24) and (25) are of the following

form:

jðxÞ ¼ A1 sinðlxÞ þ B1 cosðlxÞ þ C1 sinhðlxÞ þ D1 coshðlxÞ ð26Þ

cðxÞ ¼ A2 sinðlxÞ þ B2 cosðlxÞ þ C2 sinhðlxÞ þ D2 coshðlxÞ ð27Þ

The coefficients A1,2, B1,2, C1,2, and D1,2 are determined by
satisfying the boundary conditions. Substituting (22) and (23)
into (19) and (20), one obtains the equations that are necessary for
determining these coefficients as follows:

j000 ð0Þ þ ð1þ iZ11Þa11jð0Þ ¼ 0; j00 ð0Þ � ð1þ iZ10Þa10j0ð0Þ ¼ 0

j000 ð1Þ �L1fm11jð1Þ þ m12cð1Þg ¼ 0; j00ð1Þ ¼ 0 ð28Þ

c
000

ð0Þ þ ð1þ iZ21Þa21cð0Þ ¼ 0; c00 ð0Þ � ð1þ iZ20Þa20c0ð0Þ ¼ 0

c
000

ð1Þ �L1fm21jð1Þ þ m22cð1Þg ¼ 0; c00ð1Þ ¼ 0 ð29Þ

The spatial domain functions j(x) and c(x) must satisfy the
conditions set in (28) and (29). Rewriting these equations in
matrix form yields the following homogeneous set of equations:
½M1�4�4 ½M2�4�4

½M3�4�4 ½M4�4�4

" #
½y1�4�1

½y2�4�1

( )
¼ 0

,

ð30Þ
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where
M̂1 ¼

�l3 a11ð1þ iZ11Þ l3 a11ð1þ iZ11Þ

�a10ð1þ iZ10Þ �l �a10ð1þ iZ10Þ l
�sinðlÞ �cosðlÞ sinhðlÞ coshðlÞ

�l3 cosðlÞ �L1m11 sinðlÞ l3 sinðlÞ �L1m11 cosðlÞ l3 coshðlÞ �L1m11 sinhðlÞ l3 sinhðlÞ �L1m11 coshðlÞ

2
66664

3
77775

M̂2 ¼

0 0 0 0

0 0 0 0

0 0 0 0

�L1m12 sinðlÞ �L1m12 cosðlÞ �L1m12 sinhðlÞ �L1m12 coshðlÞ

2
66664

3
77775

M̂3 ¼

0 0 0 0

0 0 0 0

0 0 0 0

�L1m21 sinðlÞ �L1m21 cosðlÞ �L1m21 sinhðlÞ �L1m21 coshðlÞ

2
66664

3
77775

M̂4 ¼

�l3 a21ð1þ iZ21Þ l3 a21ð1þ iZ21Þ

�a20ð1þ iZ20Þ �l �a20ð1þ iZ20Þ l
�sinðlÞ �cosðlÞ sinhðlÞ coshðlÞ

�l3 cosðlÞ �L1m22 sinðlÞ l3 sinðlÞ �L1m22 cosðlÞ l3 coshðlÞ �L1m22 sinhðlÞ l3 sinhðlÞ �L1m22 coshðlÞ

2
66664

3
77775
y
T

1 ¼ A1 B1 C1 D1
� �

; y
, T

2 ¼ A2 B2 C2 D2
� �

In order to have nontrivial solution for Eq. (30), the
determinant of coefficient matrix must be equal to zero.
Expansion of this determinant leads to the following complex
characteristic equation:

aL2
1 þ bL1 þ c ¼ 0 ð31Þ

The coefficients a–c are complex value terms; hence, in general,
solution of (31) is a complex value. Substituting L0 from (21) into
(7), the axial cut depth at stability boundaries can be obtained as
follows:

blim ¼ �
EI

KsL3

L1

1� e�iot ð32Þ

Replacing L1 and e�iot with L1 ¼ L1R+iL1I and e�iot
¼ cos(ot)�i

sin(ot), respectively, one arrives at

blim ¼ �
EI

KsL3

L1R

�
1� cosðotÞ

�
þL1I sinðotÞ

ð1� cosðotÞÞ2 þ sin2
ðotÞ

8<
:

þi
K1Ið1� cosðotÞÞ �L1R sinðotÞ
ð1� cosðotÞÞ2 þ sin2

ðotÞ

)
ð33Þ

blim is a real-value term; hence, the imaginary part of (33) must
vanish:

L1Ið1� cosðotÞÞ �L1R sinðotÞ ¼ 0 ð34Þ

or

k ¼ K1R

K1I
¼

1� cosðotÞ
7

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� cos2ðotÞ

p ð35Þ

The trivial solution of (34) is ot ¼ 0+2mp, which corres-
ponds to the no-chatter case. The nontrivial solution is as
follows:

cosðotÞ ¼ 1� k2

1þ k2
ð36Þ
or

ot ¼ 2mpþ cos�1 1� k2

1þ k2

� 	

ot ¼ 2ðmþ 1Þp� cos�1 1� k2

1þ k2

� 	
;

m ¼ 0;1;2; . . . ð37Þ

Eq. (37) defines the relationship between chatter frequency and
tooth-passing frequency. Substituting (36) into (33), the imagin-
ary part of (33) vanishes and the following equation for blim is
obtained:

blim ¼ �
EIL1I

2KsL3
ðkþ ð1=kÞÞ or

blim ¼ �
EI

2KsL3L1R
ðL2

1R þL2
1IÞ ð38Þ

Finally the stability lobes are obtained by following steps:
Step1: Selecting M different chatter frequencies around the

tool dominant mode.
Step2: Selecting N integer values for m in (37) to evaluate N

stability lobes.
Step3: Determining the stability limit from (38) at each chatter

frequency.
Step4: Determining the corresponding tooth-passing period

from Eq. (37).Elastic support parameters in the continuous model
are identified in the following section.

4. Identification of tool/holder/spindle interface parameters

The elastic support parameters in the continuous model are
identified with the aid of an impact hammer test. The cutting tool
is simulated by a 20 mm diameter test bar that is mounted in a
collet-type holder with an overhang of 208 mm. The tool tip FRFs
of the test bar in feed and perpendicular directions are shown in
Fig. 2. The extracted modal frequency on, modal damping z, and
modal residue for the first two modes in feed (X) and
perpendicular (Y) directions are tabulated in Table 1.

Due to axial symmetry of the tool and tool/holder/spindle interface
it is sufficient to identify the elastic support parameters in one
direction such as feed direction (Fig. 1b). Using extracted modal
parameters of the experimental setup in Table 1, identification of
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Fig. 2. Magnitude of tool tip FRF in X and Y directions.

Table 1
Extracted modal parameters of the experimental setup.

Direction Mode on (Hz) z (%) Mode residue (m/N)(rad/s)

X 1 222 1.70 (42.0�i�11.0)�10�4

2 1280 2.84 (4.78�i�1.56)�10�4

Y 1 222 2.02 (40.0�i�13.0)�10�4

2 1290 3.27 (3.36�i�2.51)�10�4

M. Salahshoor, H. Ahmadian / International Journal of Machine Tools & Manufacture 49 (2009) 1136–11431140
elastic support parameters in the continuous model is done in
two steps.

4.1. Identification of stiffness parameters (a11 and a10)

In order to identify the stiffness parameters of elastic support,
un-damp model of the structure and un-damp natural frequencies
are used. As shown in Table 1, modal damping factors are small
(less than three percent), so the structure is a lightly damped one
and un-damped natural frequencies are approximately same as
damped ones. Omitting hysteretic damping factors (Z10, Z11) and
milling force (F1) from boundary conditions in (19), the un-
damped model in feed (X) direction is obtained as follows:

wiv
1 þ

€w1 ¼ 0

w
000

1 ð0; tÞ þ a11w1ð0; tÞ ¼ 0; w1
00ð0; tÞ � a10w1

0ð0; tÞ ¼ 0

w
000

1 ð1; tÞ ¼ 0; w1
00ð1; tÞ ¼ 0

ð39Þ

Separating the variables, one arrives at the following ordinary
differential equation:

jiv � l4j ¼ 0

j000 ð0Þ þ a11jð0Þ ¼ 0; j00ð0Þ � a10j0ð0Þ ¼ 0

j000 ð1Þ ¼ 0;j00ð1Þ ¼ 0 ð40Þ

Eq. (26) must satisfy the boundary conditions set in (40).
Rewriting these equations in matrix form one arrives at

Û1q
,

1 ¼ 0 ð41Þ

where

Û1 ¼

�l3 a11 l3 a11

a10 l a10 �l
�sinðlÞ �cosðlÞ sinhðlÞ coshðlÞ
�cosðlÞ sinðlÞ coshðlÞ sinhðlÞ

2
66664

3
77775; q

,

1 ¼

A1

B1

C1

D1

2
66664

3
77775

In order to have a nontrivial solution for Eq. (41), the determinant
of coefficient matrix Û1must be equal to zero. Expansion of this
determinant leads to a characteristic equation, which is a function
of l, a10, and a11. Replacing l with damped natural frequencies in
feed (X) direction (Table 1), using l4

¼ o2, and following Eq. (42)
to obtain non-dimensional frequencies, one arrives at two non-
linear equations.

o ¼
ffiffiffiffiffiffiffiffiffi
mL4

EI

r
on rad

s½ �
ð42Þ

After solving the equations simultaneously, the elastic
support stiffness parameters are obtained as a11 ¼102.6218
and a10 ¼ 3.6913. The next step is to identify the damping
parameters.

4.2. Identification of damping parameters (Z10 and Z11)

In order to identify the damping parameters of elastic support,
the following damped model of the structure is used:

wiv
1 þ €w1 ¼ 0 ð43Þ

w
000

1 ð0; tÞ þ ð1þ iZ11Þa11w1ð0; tÞ ¼ 0;

w1
00ð0; tÞ � ð1þ iZ10Þa10w1

0ð0; tÞ ¼ 0

w
000

1 ð1; tÞ ¼ 0; w1
00ð1; tÞ ¼ 0 ð44Þ

Separating the variables in (43), one arrives at

€T � ST ¼ 0 ð45Þ

jiv þ Sj ¼ 0 ð46Þ

For the presence of damping, eigenvalues of system (S) are
complex numbers with negative real part. Hence, time domain
function (T) is as follows:

TðtÞ ¼ e�stfA0 cosðotÞ þ B0 sinðotÞg; s;o40 ð47Þ
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Substituting (47) into (45), one obtains the following matrix form
equation:

s2 �o2 � S �2so
2so s2 �o2 � S

" #
A0

B0

( )
¼ 0

,

ð48Þ

To have a nontrivial solution for Eq. (48), the determinant of
coefficient matrix must be equal to zero, which yields

S ¼ ðs2 �o2Þ72soi ð49Þ

Substituting (49) into (46) and assuming erx as a solution of (46),
one arrives at

r4 ¼ ðo2 � s2Þ þ 2soi ð50Þ

r4 ¼ ðo2 � s2Þ � 2soi ð51Þ

Solving (50) and (51) with respect to r yields two eigenvectors
j+(x) and j�(x), respectively. Rewriting the right hand side of (50)
in polar form, one obtains

r4 ¼ ðo2 � s2Þ þ 2soi ¼ Reið2mpþOþÞ; m ¼ 0;71;72; � � � ð52Þ

where

R ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðo2 � s2Þ

2
þ 4s2o2

q
;RZ0 ð53Þ

Oþ ¼ tan�1 2so
o2 � s2

� 	
; 0rOþr

p
2

ð54Þ

Hence
Û2 ¼

ðdþ þ igþÞ3 þ ð1þ iZ11Þa11 ð�gþ þ idþÞ3 þ ð1þ iZ11Þa11 ð�dþ � igþÞ3 þ ð1þ iZ11Þa11 ðgþ � idþÞ3 þ ð1þ iZ11Þa11

ðdþ þ igþÞ2 � ð1þ iZ10Þa10ðd
þ
þ igþÞ ð�gþ þ idþÞ2 � ð1þ iZ10Þa10ð�gþ þ idþÞ ð�dþ � igþÞ2 � ð1þ iZ10Þa10ð�d

þ
� igþÞ ðgþ � idþÞ2 � ð1þ iZ10Þa10ðgþ � idþÞ

ðdþ þ igþÞ2eðd
þ
þigþÞ ð�gþ þ idþÞ2eð�g

þþidþÞ ð�dþ � igþÞ2eð�d
þ
�igþÞ ðgþ � idþÞ2eðg

þ�idþÞ

ðdþ þ igþÞ3eðd
þ
þigþÞ ð�gþ þ idþÞ3eð�g

þþidþÞ ð�dþ � igþÞ3eð�d
þ
�igþÞ ðgþ � idþÞ3eðg

þ�idþÞ

2
666664

3
777775

q
, T

2 ¼ A3 B3 C3 D3
� �
r ¼ R0:25eiððOþ=4ÞþððmpÞ=2ÞÞ

¼ R0:25 cos
Oþ

4
þ

mp
2

� 	
þ i sin

Oþ

4
þ

mp
4

� 	� 
 ð55Þ
Fig. 3. Contour plot of th
Setting m equal to 0, 1, 2, and 3, four different values of r are
obtained. For other values of m, answers will be repeated. Therefore

jþðxÞ ¼ A3eðd
þ
þigþÞx þ B3eð�g

þþidþÞx þ C3eð�d
þ
�igþÞx þ D4eðg

þ�idþÞx

ð56Þ
where

dþ ¼ R0:25 cos
Oþ

4

� 	
; gþ ¼ R0:25 sin

Oþ

4

� 	
ð57Þ

s and o are positive and soo for lightly damped system. Hence,
(o2
�s2)�2soi is in the fourth region of complex plane and its polar

form is Reið2mpþO�Þ, where O� ¼ 2p�O+. R and O+ have been defined
in (53) and (54), respectively. Following the same approach for
obtaining j+(x), one arrives at

j�ðxÞ ¼ A4eðd
�
þig�Þx þ B4eð�g

�þid�Þx þ C4eð�d
�
�ig�Þx þ D4eðg

��id�Þx

ð58Þ

where

d� ¼ R0:25 sin
Oþ

4

� 	
; g� ¼ R0:25 cos

Oþ

4

� 	
ð59Þ

Both j+(x) and j�(x) are eigenvectors of the system and they
satisfy boundary conditions set in (44). By separating the variables
and rewriting these equations in matrix form, one obtains:

Û2q
,

2 ¼ 0 ð60Þ

where
In order to have a nontrivial solution for Eq. (60), the determinant of
coefficient matrix, Û2, must be equal to zero. Expansion of this
determinant leads to a complex characteristic equation, which is a
function of d, g, Z10, and Z11. Equating the real and imaginary parts of
the characteristic equation to zero, one obtains two nonlinear
e objective function.
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equations. Using these equations and least-squares optimization
method, Z10 and Z11 are identified. For different points in the Z10�Z11

plane, solving the obtained set of nonlinear equations yields
corresponding d and g, which are converted to R and O+ through
(57) and then to s and o through (53) and (54). Desired values of Z10

and Z11 must minimize the following objective function:

G ¼
X2

j¼1

sjE � sjC

sjE

� 	2

þ
ojE �ojC

ojE

� 	2
" #

ð61Þ

Here sj and oj are the real and imaginary parts of the jth eigenvalue,
respectively. Subscript E represents eigenvalues obtained from impact
tests and modal analysis for experimental setup and subscript C
represents eigenvalues obtained from calculations for the elastic
support model. Fig. 3 shows contour plots of the objective function.
For Z11 ¼ 0.12 and Z10 ¼ 0.06 the objective function (G) is minimum.
Repeating the identification procedure using other eigenvectors in
(58) results in the same values for Z10 and Z11.

The following section employs the proposed procedure and
identified elastic support beam model parameters to obtain the
stability lobes.
5. Experimental simulation

In order to verify the performance of the proposed method in
obtaining stability lobes and comparing results with those obtained
from the lumped-parameter method a simulated case study is
Table 2
Tool, support, and workpiece properties.

E (GPa) 207 No. of flutes 2

r (kg/m3) 7860 Tool dia. (m) 0.02

Ks (MPa) 700 Tool length (m) 0.208

a10 3.6913 Z10 0.06

a11 102.6518 Z11 0.12

a20 3.6913 Z20 0.06

a21 102.6518 Z21 0.12

Fig. 4. Predicted stability lobes by the cont
performed. In this study a long slender end mill in slotting operation
is simulated by a test bar introduced in Section 4. The specifications of
elastic support beam model of this experimental setup in feed and
perpendicular directions are tabulated in Table 2. The workpiece
material is aluminium (Ks ¼ 700 MPa). Using Eqs. (37) and (38) the
stability lobes are computed and are shown in Fig. 4.

Next the stability lobes are determined using the
lumped-parameter method presented by Budak and Altintas [4]. In
this method the frequency response of the tool/spindle assembly at
the tool tip is required, which is measured by impact test and
extracted modal parameters for the first two modes of the system in
feed and perpendicular directions are tabulated in Table 1. The
stability lobes obtained using the lumped-parameter method are also
presented in Fig. 4. Comparing the results obtained from both
methods, one observes a good agreement between the results. The
predictions of the continuous model are conservative compared to the
lumped-parameter model, i.e. the prediction for critical depth of cut is
lower in the new method. This can be explained noticing the fact that
the lumped-parameter model presents a less accurate model of the
system using only few modes while in the continuous model all
modes participate in the response. Hence by an accurate representa-
tion of the system the proposed model provide a more accurate model
of the system.
6. Conclusions

Long, slender end mills are often used in automotive, biomedical,
and aerospace industries for macro- or micro-machining of various
components. It is known that most of the deflections encountered
during machining with these tools are concentrated in the tool and
tool/holder interface. A continuous model comprised of an Euler–
Bernoulli beam to represent the tool and a set of translational and
torsional springs and dampers to represent the tool–holder interface
is proposed to predict the stability lobes. Since interface parameters
do not change when the tool length is altered in tool-tuning practice,
the need for FRF measurement for each tool length will be
inuous and lumped-parameter models.
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omitted, especially in micro-machining, using the continuous model
in predicting stability lobes. Moreover, this model is an effective tool
to study the influence of micro-slip, as a nonlinear effect, at the
interface between tool/holder, on chatter vibrations.

The stability analysis of the derived continuous model
formulation is done in frequency domain using the single-
frequency solution method. Although, this method is efficient
and accurate in high radial immersion case such as slotting, which
is considered in this study, its accuracy decreases with decreasing
radial immersion. Low radial immersion milling bears a new type
of instability called flip bifurcation or periodic chatter in addition
to the already well-known type named Hopf bifurcation or quasi-
periodic chatter. The stability analysis of continuous model
formulation using time domain approaches for low immersion
cuts is a promising topic for future work. The impact hammer test
is used to identify the stiffness and damping parameters of the
tool/holder/spindle interface.

The stability lobes’ derivation using the lumped-parameter
model for high radial immersion is a well-researched topic and is
proven through considerable experiments by different researchers
in the past. Stability lobes obtained by the continuous model
formulation are compared with the lumped-parameter model
lobes. There is a good agreement between the two results with a
very small difference, which validates the continuous model.
Besides, continuous model lobes are on the conservative side,
even though to a small amount, but still it can speak on the fact
that considering all participating modes in responses by the
continuous model makes it a more accurate model in comparison
with the lumped-parameter model.
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